Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://hdl.handle.net/123456789/14586
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Kozlenko, Mykola | - |
dc.contributor.author | Козленко, Микола Іванович | - |
dc.date.accessioned | 2023-01-09T07:31:33Z | - |
dc.date.available | 2023-01-09T07:31:33Z | - |
dc.date.issued | 2022-11-29 | - |
dc.identifier.citation | M. Kozlenko, "Supervised machine learning based signal demodulation in chaotic communications," 2022 International Conference on Innovative Solutions in Software Engineering (ICISSE), Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine, Nov. 29-30, 2022, pp. 313-317, doi: 10.5281/zenodo.7512427 | uk_UA |
dc.identifier.isbn | 978-966-640-534-3 | - |
dc.identifier.other | 10.5281/zenodo.7512427 | - |
dc.identifier.uri | https://zenodo.org/record/7512427 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/14586 | - |
dc.description.abstract | A chaotic modulation scheme is an efficient wideband communication method. It utilizes the deterministic chaos to generate pseudo-random carriers. Chaotic bifurcation parameter modulation is one of the well-known and widely-used techniques. This paper presents the machine learning based demodulation approach for the bifurcation parameter keying. It presents the structure of a convolutional neural network as well as performance metrics values for signals generated with the chaotic logistic map. The paper provides an assessment of the overall accuracy for binary signals. It reports the accuracy value of 0.88 for the bifurcation parameter deviation of 1.34% in the presence of additive white Gaussian noise at the normalized signal-to-noise ratio value of 20 dB for balanced dataset. | uk_UA |
dc.language.iso | en_US | uk_UA |
dc.publisher | Vasyl Stefanyk Precarpathian National University | uk_UA |
dc.subject | bifurcation | uk_UA |
dc.subject | bifurcation parameter keying | uk_UA |
dc.subject | bit error rate | uk_UA |
dc.subject | chaotic communications | uk_UA |
dc.subject | chaotic signal | uk_UA |
dc.subject | convolutional neural network | uk_UA |
dc.subject | deep learning | uk_UA |
dc.subject | demodulation | uk_UA |
dc.subject | deterministic chaos | uk_UA |
dc.subject | machine learning | uk_UA |
dc.title | Supervised machine learning based signal demodulation in chaotic communications | uk_UA |
dc.type | Article | uk_UA |
Розташовується у зібраннях: | Статті та тези (ФМІ) |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
2022_ICISSE-320-324.pdf | 469.9 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.