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Abstract. A fundamental solution of the so-called third initial-boundary
value problem for one class of pseudo-differential equations is construc-
ted. Those equations are related to a symmetric a-stable stochastic pro-
cess and our constructions are inspired by some probabilistic ideas. How-
ever, we expound our results in a way completely independent of any
probabilistic notion. Only the last section of the paper is based on the
notion of a stochastic process and also a pseudo-process and it gives
some interpretation of our results in terms of stochastic analysis.
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1. Introduction

One of the most important notions in the theory of partial differential equa-
tions of parabolic and elliptic types is the notion of a single-layer potential.
The theorem on the jump of the (co-)normal derivative of such a potential
is a significant result of classical analysis. In particular, just this theorem al-
lows one to construct a solution to the second initial-boundary value problem
for the corresponding equation (see [4], Chapter V and also bibliographical
remarks to it).

In the paper [8] some analog to the theory of single-layer potentials
was constructed in the situation when, instead of differential, some class
of pseudo-differential equations was considered. The main theorem of [8] is
analogical to the classical one mentioned above and it is applied there for
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solving the second initial-boundary value problem for the equations under
consideration.

The aim of this paper is to construct a solution to the third' initial-
boundary value problem for pseudo-differential equations of the same type as
in [8]. Those equations are related to stochastic processes known as symmetric
(more precisely — rotationally invariant) a-stable processes. It is natural that
our constructions were inspired with some probabilistic ideas. Nevertheless,
we expound our results in a form completely independent of any probabilistic
notions. Only the last section of this article can be considered as a probabilis-
tic interpretation of the matter of prior sections and in order to understand
it, one should be familiar with some notions of stochastic analysis such as
Markov processes, the Feynman-Kac formula, W-functionals, local times etc.

We consider here a model problem: the surface where the boundary
value conditions are to be given is supposed to be a hyperplane in a Euclidean
space. We formulate the main problem (Section 2) in such a way that there
are two versions of it called symmetric and asymmetric ones. Sections 4 and 5
are devoted to those versions, respectively. In Section 3 some known facts are
exposed that are necessary for understanding the subsequent considerations.
Finally, Section 6, as mentioned above, contains the probabilistic aspects of
the results obtained in Sections 4 and 5.

2. The main problem

2.1. The operator A

For given parameters a and ¢, 1 < a < 2, ¢ > 0, let A denote a pseudo-
differential operator whose symbol is given by (—c|¢|*)¢cra (a d-dimensional
Euclidean space is denoted by R?). This operator acts on a function (¢()),cga
being smooth enough and bounded along with its derivatives according to the
formula

Ap(o) = £ [ Tptat 1) = pla) = (Velo) o)lly =" dy. = €RL (1)

x

where s is the constant given by

d—1

_ =27z I'(2—a)l((a+ 1)/2) cos(mar/2)
ala—1DT((d+ «)/2) '

In the limiting case of & = 2 the operator A coincides with c¢- A, where A is
the Laplace operator.

IThe terms: "the first”, ”the second” and ”the third” (initial-)boundary value problems are
as widely used in the theory of differential equations as their synonyms: ”the Dirichlet”,
”the Neumann” and ”the Mixed” problems, respectively. One should be careful, when
making use of these terms in the theory of pseudo-differential equations. In our opinion,
there is a sufficient reason to consider the main problem of this article (see Section 2) as
some analogy to the third (or the Mixed) problem.
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2.2. The operator B

Let B denote a pseudo-differential operator whose symbol is given by the
R%valued function (2ic|§|a’2§)§eﬂ§d. The role of this operator in our theory
is similar to that of the gradient in classical theory. In particular, for a given
unit vector v € R?, the function (2ic|¢|* %(£,v))¢cpa is the symbol of the
pseudo-differential operator (denoted by B,) that is analogical to the partial
derivative in the direction v.

If a function (p(z)),ere is bounded and satisfies the Lipschiz condition,

then
Bo(w) = o [ ey = el uds weRL @)

(6924

where s is the constant defined above. We put g(()'/) (t,z,y) = Bogo(t, -, y)(x),

t >0, 7€ Ry e R A very simple calculation (see [7]) leads us to the

equality

2(y — x,v)
at

Notice, that A = %div B, so the role of the operator A is similar to that of
the Laplacian in the classical theory of potentials.

(v)

90 (t,a?,y) = 90(t7$ay)a t>0, xz€ Rd? Y€ Rd' (3>

2.3. Formulating the main problem

Denote by Cy(R%) the Banach space of all real-valued continuous bounded
functions (p(z))zecre with the norm ||| = sup |p(z)| and by Co(R9) the
z€R

subspace of Cy,(R?) being the collection of all ¢ € C(R?) such that the set
{z € R%: |p(z)| > ¢} is a compact in R? for each € > 0.

Let S be a hyperplane in R? that is orthogonal to a fixed unit vector
v € R? and let two continuous bounded functions (¢(z))zes and (7())zes
with real and non-negative values, respectively, be given. As was mentioned
above, our aim is to construct the solution of the following initial-boundary
value problem.

For a given ¢ € Cy(R%), a continuous function U of the arguments ¢ > 0
and z € R? is being looked for such that it satisfies

(i) the equation
ou
ST
in the region ¢t > 0 and = ¢ S;
(ii) the initial condition

AU

U0+, z) = o(z)
for all x € R%;
(iii) the boundary value condition

1+a) +2Q(”“°) B,U(t,)(z+) —

forallt>0and x € S.

1 —q(x)

5 B U, )(x—) =r(x)U(t, x)
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Notice, that the boundary value condition is formulated in a normalized
form: the sum of the coefficients on the left-hand side of (iii) is identically
equal to 1.

In the case of ¢(z) = 0, we call the corresponding problem a symmetric
one and in accordance to that, the general problem is called an asymmetric
one. We construct fundamental solutions to them in Sections 4 and 5.

Another name of the general problem is the third initial-boundary value
problem. If »(z) = 0, then it is nothing else but the second initial-boundary
value problem. Its solution was constructed in [8] for a general surface S.
In the case of S being a hyperplane, the fundamental solution to the cor-
responding problem was explicitly constructed in [7]. We briefly expose the
results from [7] in Subsection 3.5.

Finally, the problem (i) — (iii) with ¢(z) = 0 and r(z) = 0 coincides
with the Cauchy problem considered in Section 3.1.

3. Preliminaries

3.1. The case of ¢(z) =0 and r(z) =0

Consider the following Cauchy problem: for a given ¢ € Cy(R%), a contin-
uous function (ug(t,2));>0 .ecre is being looked for such that it satisfies the
equation

ot 1o )
in the region (t,7) € (0,+0c) x R? and the initial condition
ug(0+, ) = p(x) ()

for all z € R,
It can be easily verified that the fundamental solution to this problem
is given by (t > 0, z € R?, y € RY)

it ) = (2) [ explife — 9.€) — ctll") e (©
R

This means that the function gy as a function of the arguments (¢t,z) €

(0, +00) x R? for fixed y € R? satisfies equation (4) and for any ¢ € Cy(R%)

the function

ug(t, @) = /Rd go(t,z,y)p(y)dy, t>0, z€R (7)

solves the problem (4), (5).

The maximum principle for equation (4) (see [3], Lemma 4.7) implies
the uniqueness of the solution in the class Co(R?). One can easily observe
that for any ¢ > 0, the function (7) belongs to Co(R?) if only so does ¢.

As a consequence of these facts, we have the following properties of the
function gg.

3.1.A. The values of the function gg are positive.
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3.1.B. Foralls>0,t>0 zcR?and y € R? the equality

s +t..9) = [ go(svm, (e, ds
R

holds true.

3.1.C. The equality / go(t,z,y)dy = 1is valid for all ¢t > 0 and = € R%.
Rd
Besides, the function gg satisfies the inequality

t

t7 ) < N )
go(ts,y) < (1o 1 |y — a])d+e

t>0, zeR? yeRY, (8)

where N is a positive constant (see [3], Chapter IV).

Let S be a hyperplane in R? that is orthogonal to a fixed unit vector
v € R%. We will have an opportunity to make use of the equality (the integral
on the left-hand side is a surface one)

y 1 o p 2\«
P nttpydo, = = [T D cos(pa ) dp (9
S 0

valid for t > 0, z € R? and ¢ € S (see [8]). Combining (8) and (9), we have
the estimate

t
<N 1
ottt o

held true for ¢ > 0 and z € R? with some constant N > 0.

3.2. Single-layer potentials

Let S be the same as above and let a continuous function (v(t,z))i>0,zes
with real values be given such that the inequality |v(¢,z)| < Ct~# holds true
for all £ > 0 and z € S with some constants C > 0 and $ < 1. Define a
function Vj of the arguments ¢t > 0 and 2 € R¢ by setting

Vo(t,:r):/o dT/Sgo(th,x,y)v(T,y)day. (11)

Inequality (10) implies the following estimate for V;

O-Hr 1) s

Volt. )] < ON= o ,

t>0, zeRL

It shows that the function V} is not only well-defined, but also is continuous
with respect to the arguments ¢ > 0 and = € R?. This function is called the
single-layer potential (with “the mass v distributed on (0, +00) x 5”).
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3.3. The function B,V

Let a hyperplane S and a continuous function (v(¢,x))i>0,zcs be the same
as in Section 3.2. We now prove the relation

B, Vi(t, ) (x) = / dr /S ot — 7.2, y)0(r, ) do, (12)

valid for t > 0 and x ¢ S.
First, we observe that the function on the right-hand side of (12) (de-
note it by VO(V) (t,x) for t > 0 and = € R?) is well-defined. It is clear that

V¥ (t,2) =0 for t > 0 and z € S, since g\ (t — 7,2,y) = 0 for 2 € § and

y € S in accordance to (3). If x ¢ S, then (3) and (8) imply the inequality
|(z,v)]
(£ =)+ ((2,0) + |y — Z2)1/2]de

where & = x — v(z,v) (Z is the orthogonal projection of  on .S). Therefore

v 2
‘g(() )(t_T’x’y”SaN y €S,

Ve (t,x)] <

2 ! do
< —-CN By y <
T« /o ’ T/g [(t—T)l/O‘—F((aj’y)Q+|y_j;|2)1/2]d+a—1 =
2 dz
-  CN —ay1-p
a(l _B)C [(z,v)] 7t /ROF1 1+ |Z|2)(d+a—1)/2

and the function VO(V) is indeed well-defined.

It remains to show that the function W(y, v)
[yl*F

IN

is inte-
y€ERd
grable over R? and that B, Vo (t,-)(z) = VOV) (t,z) fort > 0and x ¢ S. Taking
into account the estimate for Vj, we arrive at the conclusion that it is suffi-
cient to verify that the integral (we use the notation Bs = {y € R% : |y| < §})

/ Volt, = + ) — Volt, o)y =4~ 'y, = ¢ 5, (13)
Bs

is finite for a positive § being small enough.
We choose 0 < § < 3|(z,v)| (z ¢ S is a fixed point). The well-known
theorem of analysis allows one to write down the equality

gO(t -7,z +Y, Z) - gO(t ) Z) = (VQO(t - T Z)(l'*),y),
where z* = x + 0y for some 6 € (0,1). According to Kochubei’s inequality
(see [3], Lemma 4.1)
t—T1

t—r,- NN -
|Vgo( T, 72')(-77 )l = [(t— T)l/a 4 |Z _$*|]d+a+1

Since |z —z*| > |z —a| =1 (|2 — 2> + (w,u)2)1/2 for z € S and

. 2d+a+1 dz
/S |v90(t ) Z)(l‘ )| do, SN(t - T) /Rd—l (|Z|2 + (l‘, V)Q)(d+a+1)/2 =

‘7a72

=const - (t — 7)|(z,v)

)
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the following estimate

/B|vo<t,m+y>—vo<t,x>\|yrd*°‘|<y,u>|dys
S5

t
<const - |(w,v)| 77 / Tt —r)dr / ly| =7 2dy
0 Bs

is held. This estimate shows that the integral (13) is finite. On the other
hand, it shows that the order of integrating in B, Vy(¢,-)(z) can be changed
and this completes the proof of (12).

Similar arguments allow one to assert that the function (Vo(t, 2));~0 yerd
satisfies equation (4) in the region ¢ > 0 and = ¢ S (see [8] for details).

3.4. The jump of the function B,V

The function Vo defined by (12) is continuous with respect to ¢ > 0 and
x ¢ S and it has jumps at the points of S described by the following particular
case of the general theorem (see [8]):

the relations

hm dT/ (t —7,2z,y)v(1,y) doy, = Fo(t, x) (14)

Z*}Z

hold true for all ¢t > 0 and = € S, where z — z+ (respectively, z — z—)
means that z approaches x along any curve lying in a finite closed cone K in
R? with vertex at o such that K C {z € R?: (z,v) > 0} U {x} (respectively,
K C{zeR?: (z,v) <0}U{z}). The so-called direct value of B, V(t,-)(x)

for t > 0 and x € S vanishes in (14) because of géy)(t,x,y) =0 fort > 0,
z € Sand y €S (see (3)). The dual formula for (14) is as follows

t
lim dT/ v(t — T, x)g((f') (1,2,2)do, = tou(t,y) (15)

z—y+ 0

fort >0and y € S.
The proof of (14) is based on the following reason. Consider the integral

¢
I(t,z):/o dT/Sg(()V)(T,z,y)day, t>0, z¢ S.

According to (9), we have

t o)
I(t, z) :—2(7:;)/0 dT—T/O e cos(p(z,v)) dp.

Integrating by parts, we obtain for ¢ > 0 and z ¢ S

t Z _7/ dT/ a 7CTpQSIH(p(Z l/)) dp:
p

= — lim —/ e Cél’awdp_i_ 2/ e—ctl)awdﬂ
0 P 0 p
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Hence, the following formula

2 o (o3 i
I(t, z) = —sign(z,v) + f/ e e sin(p(z,v)) dp
™ Jo P
holds true for t > 0 and z ¢ S. Equality (14) is a simple consequence of this
formula (see [7], [8] for details).

3.5. The fundamental solution in the case of r(z) =0
We put for t > 0, 2 € R? and y € R?

t
GO(ta Z‘,y) = 90(t7$ay) + / dT/ gO(t - T,Z, Z)g(()y) (Ta Z,y)q(Z) dO'z (16)
0 S

and first of all show that the integrals in (16) are well-defined. It is evident
for y € S because of the equality géu)(T,z,y) =0forze Sandy € S (see
(3)); so, we have Go(t,2,y) = go(t,z,y) for t > 0, z € R? and y € S. Further,

as follows from (3) and (8), the inequality

(v) <2y (9, )
|gO <7727y)| = a (Tl/a I |y_ Z|)d+a
is held for 7 > 0, z € S and y € R%. Since |y — 2| = (|7 — z|> + (y,v)?)/2 >
|(y,v)| for z € S and y € R? (we remind that § = y — v(y,v) for y € R?),
the estimate |g{" (7, z,y)| < 2ZN|(y,v)|47**1 is valid for 7 > 0, z € S and
y € RY\ S. It implies the inequalities

IN

/Sgo(t - T,%, Z)g[()U)(T7Z7y)q(Z) dO'Z

IN

2 —d—a
< 2 )qIN|(g, w4t / golt — .2, 2) do,
« S
2 g _
< 2 gV, (1 - ) e

that are fulfilled for 0 < 7 < ¢, » € R% and y € R?\ S, where ||q|| = sup |q(7)|
€S

and the evident consequence of (10)

/ go(t —1,2,2)do, < N(t — 7')71/0‘
S

has been used.

We have just proved that the function G is defined correctly. Moreover,
it is a continuous function of the arguments ¢ > 0, x € R% and y € R%\ S.
As the relations (15) show, Gy has jumps at the points y € S and they are
described as follows

Golt,z,yx) = (1 £ q(y))go(t,z,y), t>0, z€ R yes. (17)

Let us now show that, as a function of the third argument, Gy is ab-
solutely integrable over R?. Some very simple calculations allow us to write
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down the formula

2c!/ 1
/dl(y,V)lgo(T,z,y)dy= CW F(1—>71/a, >0, z€ S8,
R

(%

and the inequality (more precise than written above)
ra
/ go(t — 7, 2,2)do, < ( /1(;2 (t— 7)Y
S Tac
Hence,

/ Golt, 2, )] dy <
Rd

4el/e 1 t 4
§1+07Hq”1“ <1a>/ TifldT/go(th,x,z)dcrz §1+7Hq”
0 s

o a?sin® T

, 0<7<t, zeRL

which means the integrability desired.
As a consequence, we have the inequality

4{lq
Go(t, z,y)¢(y) dy’ < (1 e ” !,r) el (18)
o~ S1n o

Rd
valid for all t > 0, x € R? and ¢ € Cy(R?).
Since / géy) (t,z,y) dy = 0, we have the identity
Rd

Go(t,z,y)dy = 1. (19)
]Rd
Besides, the function Gy satisfies the equation (compare with 3.1.B
above)

G0(8+tax,y) = / GO(S,ZL',Z)Go(t,Z,y) dz (20)
d

R
for all s >0, ¢ > 0, x € R? and y € R?. The proof of this equality consists of
very simple calculations (we omit them) based on the formula (s > 0, ¢t > 0,
r € R? and y € RY)

/Rd 9" (5,2, 2)g0(t, 2,y) dz = g{" (s + t, 2, y),

the validity of which can be verified immediately.
In one-dimensional case the function Gy is given by
2qy

t
GO(t7 €L, y) = gO(tv €, y) + 7 /0 gO(t -7, 0)90(7—5 07 y)dg (21)
for t > 0, x € R! and y € R'. As was shown in [6], this function takes on not
only non-negative values but also negative ones (if ¢ # 0). The same concerns
the function Gy in the case of d > 2 (and ¢(x) # 0).

It can be now verified that the function G is the fundamental solution
to the problem (i) — (iii) in the case of r(z) = 0. First, for fixed y ¢ S
it satisfies equation (4) in the region (¢,z) € (0,+00) x (R?\ S). If y € S,
then Go(t,z,y) = go(t,z,y) and consequently, that equation is satisfied by
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the function (Go(t,2,y))i>0.zera in the whole region (¢,z) € (0, +00) x R%.
Second, for a given ¢ € Cy(R?), we put

Vot 2, 0) = / o()Golt,z,y)dy, >0, v € R
R4

This function can be written as follows (the function wug is defined by (7))

t
UO(t7 x, 90) = Up (ta z, 90) + / dr A 90 (t -7, y)u(()y) (Ta Y, SO)Q(Z/) dO'y, (22)
0
where
u§ (ry.0) = /Rd 98 (r,y, 2)p(2) dz = Byug(r, -, ) (y), T>0, y€S.

As follows from [7], the function Uy satisfies the conditions (i) and (ii). Ap-
plying now the operator B, to both sides of (22) and using relations (14),
we arrive at the following equalities

B,Uo(t,-,¢)(z£) = (1F q(2))ul (t,2,0).

Hence, the function Uy satisfies the boundary value condition (iii) for r(x) = 0.

4. The fundamental solution of the symmetric problem

In this section the function ¢ is supposed to be identically equal to zero and
the bounded continuous function (r(x)),cs with non-negative values remains
to be given. Our aim is to construct the fundamental solution to the problem
(i) — (iii) in this case.

4.1. The equations of perturbations

Notice that for any ¢ € C,(R?) the function (ug(t,z,¢));>0.rcre defined by
(7) constitutes a semigroup

Uo(S"‘t,l‘,Q@) = Uo(S,x,UQ(t, 'ago))v s> 07 t> 07 HAES Rdv

with the operator A serving as the generator of this semigroup. It is not
difficult to guess that in order to obtain the semigroup connected with the
problem (i) — (iii) (for ¢(z) = 0), one should additively perturb the generator
A by an operator whose action on a given function consists in multiplying
it by the function (r(z)ds(x)),crd, where dg is a generalized function on R¢
determined by the relation

(6, ) = /S (z) do (23)

valid for an arbitrary test function (¢¥(x)),ecga. According to the perturba-
tions theory (see [5]), such a perturbed semigroup must be determined by the
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kernel g(t,x,y), t > 0, z € R% y € RY, satisfying each one of the following
pair of equations

g(t’x’y) :go(t,x,y)—/ dT/go(t—T,.Z‘,Z)g(T,Z,y)T(Z)dO’z,
(24)

9t 2,y) = golt,z,y) — /dT/ = 7,2, 2)90(T, 2,y)r(2) do.

We now construct the solution to these equations. Some approximating pro-
cedure will be described after that.

4.2. Solving equations (24)

The method of successive approximations will be used for consructing a so-
lution to (24). For t > 0, = € R? y e R% and k =1,2,..., we put

t
k(taxay) = / dT/ gO(t - T,"E,Z)gkfl(T,Z,y)’l"(Z) daz~
0 S

By induction on k one can verify that

t
gk‘(taxay) :/ dT/gk_l(t—T,JI,Z)go(T,Z,y)’/‘(Z) dgz-
0 S

We need some proper estimates for g, in order to assert that the sum of the

series
o0

glt,z,y) = (1) *ge(t, z,y) (25)
k=0
solves each one of equations (24).

Our plan is as follows. We will establish the estimates desired in the
regiont > 0, z € S and y € S and therefore, we will have got the solution to
equations (24) in that region. As follows from those equations, the function g
is uniquely determined by its values in the region ¢t > 0,z € Sand y € S (even
only in the region t > 0, z € S and y € S4, where 4 = {z € S : r(x) > 0}).

To avoid some trivial remarks, we consider the case of d = 1 separately.
In this case equations (24) can be rewritten as follows

t
g(t7x7y) = go(t7xay) _T/ go(t_T7xa0)g(TaO7y) dTa
0

t
ot 2.9) = golt,z,y) — / ot — 7.2,0)go(r 0, ) dr.
0

where 7 is a non-negative number. By induction on &, we obtain ( =1 — é)

(cct/ gin T) k-1 IR
t = a t @ t k=0,1,...
gk( 7070) F((k+1)9) ’ >0, 07 )
Therefore,
e (acl/a sin 1)_’“_1

90,0 = > =) gt

k=0
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Having already had ¢(t,0,0), we find out g(¢,z,0) from the first equation in
(26)

t
g(t,x,O) = gO(taxa 0) - ’f‘/ gO(t - 7,7, 0)9(77070) dr
0

and after that, the function g(¢,x,y) is expressed from the second equation
in (26)

t
g<t7 x)?’/) = go(t,l‘,y) - ’I"/ g(t —T,Z, 0)90(7—7 O7y) dr.
0

If we put

éd%%y%=/ e Mgo(t,z,y) dt, mxxw>=/'e”wumwwﬁ
0 0

for A >0, z € R! and y € R!, then we arrive at the formula
_ gO()H &£, O)QO(Aa 0) y)
g(A,0,0)
+ 1 §o()\,x,0)§0(/\,0,y)
14+ rgo(A,0,0) g(A,0,0)
Some interesting consequences of this formula are discussed in our paper
“On some Markov processes related to a symmetric a-stable process” to be

published soon.
We now return to equation (24) supposing d > 2.

g(/\’ €T, y) = gO()‘v €T, y)
(27)

Lemma 1. If d > 2 then the following estimate

4C k(T 0 k NE+1 r k tk9+1
ity < U TOPN 1 d -
(2 + k0) (te + |y — z|)d+e
holds true for allt > 0, x € S, y € S and k = 0,1,2,..., where N is the

dz

= gdta _—
re-t (14 [2) e

constant from (8), 6 =1— L ||r| =supr(z), C
z€eS

Proof. We use the method of mathematical induction on k. Inequality (28)
for k = 0 coincides with (8) and is true. Suppose now that it is true for some
k > 0. We have to estimate the following integral for t > 0, x € S and y € S

td PR ko+1 .
= . (29
/0 T/s [(t — )/ £ [z — gf[dta [71/o 4 |y — z[]dte 4 (29)

Our reasoning is similar to that given by A. N. Kochubei in [3] (see also [9]).
We put fort >0,z € Sand y € S

Iy ={(r,2) : 7 €(0,t/2),z€ S}, Uy ={(r,2): 7 € (t/2,t),z € S},
1
M = {(r2) € M s 7!/ fy =2 < S0+ y =)}, The = T\ Ty,

1
My ={(r,2) €My : (t— 1)/ + ]2 — 2| < g(tl/a+|y*$|)},
Iy =TIy \ IIog.
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For | € {1,2} and m € {1,2}, denote by I, the integral with the same
integrand as in (29) and the domain of integration (7,z) € II;,. Then
2 2
I=% Y I
I=1m=1
For (7, z) € II;1, we have

1
(t=) e —a| 2tV =V y —a| = |2 —y| 2 §(t1/a+|y—$|) (30)

since the inequality (u — v)? > u? — v? is true for 0 < v < u/2 and p < 1.
Consequently,

I < 2d+a /t(t ) k41 p / dG’Z
—T)T T =
= (e gy — af)dre ) s (T1/a |y — z[)d+e
C(k+1)0+1

= (tl/a + |y _ x|)d+aB((k + 1)97 2))

where C' is defined above and B(-,-) is Euler’s beta-function.
If (7, 2) € Iy2, then the inequality 74/ + [y — z| > (£ + |y — 2|) is
fulfilled and it implies the estimate

20t ' ko-+1 do
t— d 2 =
(175 + |y — a))*ro /0( 7 T/s (t—1)/7 + [z — a])ie
COp(k+1)0+1

= iy WMB(@, 2+ k).

I; <

Now in the region (7, z) € IIy; the inequality (see (30))
1
Py = 2] 2 (6= )Yy ] = 2 — o] 2 S+ Jy — al)

is valid and we have
Ct(k+1)9+1

I <
21 = (t1/e + [y — z|)d+o

B(0,2 + k).

Finally, if (7,z) € Ilyo, then (t — 7)Y/ + |2 — x| > 1 (t/* + |y — z), and
we have
Ct(k+1)0+1

tl/a + |y _ m|)d+a

Taking into account the evident inequality B(6,2+k6) > B((k+1)6,2)
valid for all kK =0,1,2,... and 0 < # < 1, we arrive at the estimate

I < ( B((k+1)6,2).

4O E+1D)0+1
IS @yl —apaa DO T

that implies (28). The lemma has been proved. (]

As follows from the lemma, the sum of the series (25) in the region ¢t > 0,
x € S and y € S is a continuous function g(¢, z, y) satisfying equation (24) in
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that region. Moreover, for any 7' < 400 there exists a positive constant L
such that the inequality

t
@7+ Ty —a)™*

is held for all ¢t € (0,7], z € S and y € S. Using this result and the second
equation in (24), we can extend the function g to the region t > 0, x € S
and y € R?%. The fact that this extended function possesses the property (31)
follows from the estimates similar to those proved Lemma 1 (for k£ = 0).
After that, with the help of the first equation in (24), the function g can
be extended to the whole region ¢t > 0, z € R%, y € R? and this extended
function g will satisfy inequality (31) for all ¢t € (0,7], z € R? and y € R?
with some positive constant L being finite for 7" < 4o0.

Notice that the solution to each one of equations (24) possessing the
property (31) is unique. This assertion follows immediately from Lemma 1,
since the estimate (28) is fulfilled for the difference between any two solutions
of the kind.

lg(t,z,y)| < Lr (31)

4.3. The approximating procedure

We now approximate the generalized function (r(x)dg(z)),cra by the regular
functions (vp(z))4era, as h — 0+, where

vp(x) = / go(h, z,y)r(y)do,, = €RY h>0.
S

It is an easy exercise to verify that the relation
lim vp(x)p(x) dx = / r(z)p(z)do (32)
h—0+ Rd S
is true for any continuous compactly supported function ¢. In other words
hlir(r)lJr vp(x) = r(z)ds(z).
Let u™(t,z,0), h > 0,t > 0, z € R, ¢ € Cy(RY), be the solution of
the following problem
Ou™
ot
u™(0+,2,9) = p(z), z€R%

= Au® —(z)u™, >0, zeR? (33)

As follows from the perturbations theory, the solution of this problem must
solve the following integral equation

t
u(h) (t7 Zz, ‘P) = UO(t7 xz, (P) - / dr /]Rd 90 (t —T,7, y)u(h) (T7 Y, (P)Uh (y) dy (34)
0

The method of successive approximations allows one to construct a solution
to this equation. We put uéh)(t,:zz, ) = ug(t,z, ) (see (7)) and for k > 1

t
o) = [dr [ oot =)l (oot du
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As follows from (10) and 3.1.B,

/d go(t — 7,2, y)vn(y) dy = / go(t =7+ h,z,2)r(z)do, <
R S

< FIN(E =7+ h) =V <IN (= 7)1

(35)

Making use of this estimate, by induction on k, one can easily arrive at the
following inequality

k
() < Il NV7IT(0)" ko
|uk (t7m790)| — F(k9+1) t 9

where 6 =1 — é, as above. Therefore, the sum

t>0, zeRY h>0, k=0,1,...,

o0
h
WMt 7,0) = Y (D (b7, 0)

k=0

is a solution to equation (34) satisfying the condition
sup [P (t, z, )| < +o0
(t,z)€[0,T] xR4

for any T' < 4o00. Such a solution is unique.

The maximum principle for the equation in (33) allows one to assert
that the values of the function u(") are non-negative if only the values of ¢
are so.

Now, we are going to pass to the limit, as h — 0+, in equation (34). In
order to do this, we make use of the following auxiliary result.

Let a measurable complex-valued function (¢ (t, x));>0 zera be such that

sup |th(t, z)] < +oo for any T < +oo. Consider its transformation
(t,z)€[0,T) xR
¥y, for h > 0 given by

t
wh(ta‘r) :/0 dT‘/Rd gO(t - T7xay)w(7—7 y)vh(y) dy7 t > 07 HARS Rd'

We assert that this transformation is compact in the following sense (as above,
we use the notation B = {y € R?: |y| < R} for R > 0 and B% = R?\ Bg).

Lemma 2. For given numberse >0, L > 0, T >0 and R > 0, there exists a
number § > 0 such that the inequality

[Vt @) — Yu(t, @) < e

is held for allh > 0,t € [0,T],t € [0,T], x € Br, ' € Bgr and all measurable

Junction (V(t,2))i>0 zere with the property sup |(t,x)| < L, if only
B (t,z)€[0,T] xR4
the inequality |t — t| + |2’ — x| < 0 is fulfilled.

Proof. Fort < t',x € R and 2’ € R, we represent the difference 9y, (', 2') —
Yy (t, ) as the sum of two terms Iy and I, where

I = /0 dr /Rd [go(t’ —7,ay) — go(t — 7, z, )|(1, y)vr(y) dy,
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t/
b= [ dr [ oot~ rag)otrpents)
t R
Inequality (35) implies the estimates

|I2|<L/ dT/ go(t' — 72", y)on(y) dy < Lir HN( t)e

and therefore In — 0, as t' — ¢t — 0 uniformly with respect to h > 0
and 2’ € R% The same reason is applicable to estimating the integral (for
0<y<t<t <Tandz' €R?

t
/ dr / g0l — 7,2, y)(r, y)on(y) dy| <
t—y R4

v 0
< LHT”/ dT/ g’ —t+7+h,2' y)do, < L||r||N%.
0 S
This means that I; = Ii + I;, where
’ t77
=Ty [ dr [ loolt = 7') = gnlt = 7 )6 g)on (o)
0 R

1] < const[(t' — )" ++7]
(the const depends only on L, N, ||r||, ¢ and a). So, the quantity I, becomes
small enough if ¢ — ¢ and v > 0 are chosen to be sufficiently small.

In order to estimate I 1 for fixed v > 0, one should make use of the uni-
form continuity of the function gy given by (6) with respect to the arguments
(t,z,y) € [y, +00) x R? x R? for any ~ > 0. It only has to be taken into ac-
count that the function v, may be not integrable over the whole R? for d > 2
(it will be the case if the function (r(y))yes is not integrable over S). In the
case of d = 1, we have v;,(y) = 7 - go(h,y,0) for y € R! (see considerations
prior to Lemma 1 and vp(y)dy = r > 0. The assertion of Lemma 2 for

R1
d =1 can be thus strengthened (see Lemma 3 below).

So, we suppose that d > 2 and put

J((gh)(T,x)Z/ 90(T, 7, y)vn(y) dy

c

for h >0, Q >0, 7 € (0,7] and = € R?. Using inequality (8), we can write
down for z € Bg and @ > R

.
g (TV* + |y — af)dte

IS5 (r,x) <N vn(y) dy <

N e Gy —alj2 1 (@~ By ) W

According to (10), we have

vn(y) < Nl y € R% (36)

h
(RV o+ |(y, v) )t
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Therefore,

J5 (7,2) <

+oo
§N2||T’||/ - hdp - / : TdO'y -
—oo (P +p])> o }(T/a+|y—l‘|/2+(Q—R)/2) °
y,v)=p
(37)

Taking into account that for y € {z € R? : (2,v) = p} and x € R? the
inequality |y—x| > |§—Z| (we remind that Z means the orthogonal projection
of z on S) is valid, we arrive at the inequalities

J9 (1,2) <

+oo dp Tdz
< N? / 7/ =
SN G e G 2 (@ B2 S

d+a+1 9 1 dz
N — Ry~ B —
Fr@-R [

We have thus proved that uniformly with respect to h > 0 and (t,z) €
[0,T] x Bgr, the relation

<

t
/ Jé?h)(T,{L‘) dr — 0, as @ — +oo,
0

holds true. It remains now to show that for fixed v > 0 and @ > 0 the integral

=y
oy / dr /B 90t — 72 y) — golt — T2, ) (T y)on(y) dy
Q

becomes small enough if the points (¢',z’) € [0,T]xBg and (¢, z) € [0,T]xBg
are chosen to be sufficiently close each to other one. It was mentioned above
that the function go is uniformly continuous on the set [y, +00) x R? x R,
hence, the assertion desired will be established if we show that

sup / v (y) dy < +oo
h>0 BQ

for fixed @ > 0. Using (36), one can write down the inequality

hdp

Q
vp(y)dy < N||r / —_— / do,.
/BQ h( ) || || _0 (hl/a+|p|)a+1 Y
BoM{(y,v)=p}

It is clear that
(d—1)/2
T
doy < ———— Q41
WS a2
Bon{(y,v)=p}
Therefore,
or(d=1)/2

[, < Ve (39)
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This completes the proof of the lemma in the case of d > 2. As was noticed
above, in the case of d = 1 the following strengthened version of Lemma 2
has been proved.

Lemma 3. If d = 1, then for given numbers ¢ > 0, L > 0 and T > O there
exists a number § > 0 such that the inequality

|wh(tl7$/) - wh(tv'r” <e€

is held for allh > 0,t € [0,T], ' € [0,T], z € R, 2/ € R! and all measurable

function (Y(t,))1>0,zcrr with the property sup [(t,x)| < L, if only
- (t,z)€[0,T]xR?

the inequality |t' — t| + |2’ — x| < 0 is fulfilled.
O

Now we can pass to the limit, as h — 0+, in equation (34). First of
all, using the diagonal method, we can choose a sequence h,, — 0+ in such
a way that u(") (¢, 2, ) converges to a function u(t,z, ) locally uniformly
with respect to t > 0 and 2 € R%. Then (32) implies the following equation
for the limiting function u

t
U(tax,SD) = UO(t,.’E,QO) - / / gO(t - T,x7y)u(7,y,cp)7"(y) d0y~ (39)
0 Js
Notice, that the estimates for u,(ch), k =0,1,2,..., were uniform with
respect to h > 0. So, the limit equation, that is equation (39), can be
solved in the same way as the equation for u™ has been solved. Accord-
ingly, we can conclude that the solution to (39) possessing the property

sup |u(t,z,p)| < +oo for any T < +oo is unique. It means, first,
(t,z)€[0,T] xR

that hh%l uM (t, 2, 0) = u(t,x, ) and, second, that the values of the func-
—0+

tion (u(t,,9));>0.0cre are non-negative if p(x) > 0 for all z € R%.

Now, let us observe that equation (39) can be obtained by multiplying
the first one of equations (24) by ¢(y) (¢ € Cy(R%)) and integrating both
sides of it with respect to y € RY. This means that for ¢ € Cy(R?)

u(t, z, @) = / git,x,y)e(y)dy, t>0, x€ R%. (40)
Rd

As a consequence, we have that the function g takes on only non-negative
values.

It follows from equation (39) and Subsections 3.3, 3.4 that for any ¢ €
Cy(RY) the function (u(t,z,¢))¢~0.rcre satisfies the conditions (i) and (ii).
Besides, the equalities

Bou(t, -, ¢)(a%) = uf (t, 2, ) £ r(z)ult, 2, ¢)

are valid for ¢ > 0 and = € S. Therefore,

lBuu(t, Se)z=) =r(z)ult,z, ), t>0, z€S.

1
§Buu(t7 "y (p)((E-l—) - 9
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It remains to prove that for a fixed y € R¢ the function (g(t, 2, y))i>0.zcra
satisfies the equation (4) in the region ¢t > 0, z ¢ S. This is now a non-difficult
exercise left for a reader.

We have thus proved the following assertion.

Theorem 1. The function g constructed as the sum (25) is the fundamental
solution to the symmetric initial-boundary value problem.

5. The fundamental solution of the asymmetric problem

5.1. The equations of perturbations

Our starting point is now the function Go(t,z,y), t > 0, x € R? and y € R<.
By the analogy to equations (24), we first write down those equations with
the function gg being replaced by Gg. The function to be found is denoted
by G. Taking into account (17) and the fact

li =
Jim [ Gttt dy = [ ao(t..9)r) do,

we arrive at the following pair of equations

G(t,.’ﬂ, y) = GO(tvx,y) - -/0 dT/SgO(t -T7,Z, Z)G(Ta z,y)r(z) dazv
(41)

¢
G(t,z,y) = Go(t,z,y) — / dT/ Gt —1,2,2)Go(T, z,y)r(2) do.
0 s

For t >0, z € R and y € S, we have Go(t,z,y) = go(t,z,y), and the first
equation can be rewritten in this case as follows

G(t,2,y) = golt, 2. ) — / dr /S G0l — 72,2 G, 2 y)r(z) don. (42)

This implies the equality G(t,z,y) = g(t,z,y) fort >0, r € R and y € S.
From the second equation we obtain the following formula for G

G(t,z,y) = Golt, z,y) —/0 dT/Sg(t —7,2,2)Go(T, 2,y)r(2) do, (43)

that is held true for all t > 0, 2 € R? and y € R%. It gives the representation
for the function G in terms of Gy and g constructed above. The dual repre-
sentation can be obtained from (43) and the second equation in (24) by very
simple calculations

t
Glt,2,y) = glt,z,y) + / dr /S ot — 7.2, 2)g (r, 2 p)a(z) do. (44
0

The equality G(t,z,y+) = (1 £ q(y))g(t,z,y) valid for t > 0, 2 € R? and
y € S is a consequence of (44).
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5.2. The initial-boundary value problem
For t > 0, z € R? and a given function ¢ € Cy(R?), we put

U(t’wi) = /]Rd G(t,l‘,y)(p(y) dy.

Theorem 2. The function U is a solution to the initial-boundary value problem
Proof. Multiplying both sides of (42) by ¢(y) and integrating with respect
to y € R%, we get the following equation for the function U

Ut,x,p) = Uy(t,x,p) — A dT/Sgo(t —1,2,2)U(7,2,0)r(2)do,.  (45)

As was shown in Subsection 3.5, the function Uy satisfies the conditions
(i), (ii) and the boundary condition (iii) with r(z) = 0. We put for ¢ > 0 and
xr € R4

t
V(tax7¢) :/ dT/go(th,x,Z)U(T,Z,(p)T(Z) dO’z.
0 S

This is a simple-layer potential. It satisfies the condition (i) and the initial
condition V (04, z,¢) = 0. It follows from Subsection 3.4 that V' possesses
the property

B, V(t, ¢)(a£) = Fr(x)U(t, z,¢)
for t > 0 and = € S. This completes the proof of the theorem. (I

Remark. The function G defined by (43) or (44) is the fundamental solution
of the problem (i) — (iii).

6. The probabilistic interpretation

6.1. The symmetric a-stable process

The function gq is the transition probability density of a standard Markov
process in R? in the sense of [2], Theorem 3.14. Denote that process by
(x(t), My, P;) or somewhat shorter (z(t))¢>o. It is called a symmetric a-
stable process. The function f;(x), t > 0, x € R?, defined by

fulw) = / ar /S go(r, 2, 9)r(y) dor,

is a W-function for this process satisfying the condition sup fi(x) — 0, as
z€R4
t — 0+ (see (10)). According to Theorem 6.6 from [2], there exists a W-

functional (7:(r));>0 of the process (x(t));>0 such that f;(z) = Eyn(r) for
all t > 0 and z € R Let ro(x) = 1 and 1; = 1¢(r0), t > 0. The functional
(nt)e>0 is called the local time on S for the process (z(t))¢>o. It is clear that

¢ () :/o r(z(s))dns, t>0.
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For h > 0, we put

t
i = [ oale)ds. t=0
0
where vy, is defined in Subsection 4.3. A very simple calculation shows that
$77t / dT/goTxy y) doy, t>0, h>0, z € RL

This implies the estimate

h - [} - [0 - [e3%
Eon () = Eam(r)| < V|V [ (64 R)! 7 — 1712 4 2/

valid for t > 0, z € R?, h > 0. Applying Theorem 6.4 from [2] leads us to the
relation

(h)
hgrg)l+nt (r) = ne(r) (46)

that takes place in the sense of mean square convergence. The function u and
1™ introduced in Section 4 have the following probabilistic sense

W (t,2,0) = B (w(@()e™ ), ult,a,p) = Eo (pla()e ).
Relation (46) implies the pointwise convergence

ult,2,0) = lim w1, 2,0). (47)

The fact that the function u® is a solution to equation (34) is a consequence
of the Feynman-Kac formula. Lemma 2 allows one to assert that the conver-
gence in (47) is locally uniform with respect to t > 0 and # € R? (if d = 1
that convergence is uniform with respect to x € R!, see Lemma 3). Finally,
we have the following probabilistic representation for the function

utag) = [ oltonotn) dy = (ple)e ) ()

that holds true for t > 0, z € R and ¢ € C(R?).

Further, the function g constructed in Section 4 is the transition prob-
ability density of the process (z(t));>o killed at some stopping time (. It is
clear that

P, ({C > 1)) = / o(tzy)dy. >0, zcRE

From the second equation in (24), we conclude

P, ({C > t}) _1—/dT/ g(r, 2, y)r(y) doy,.

Therefore, the density of the distribution function of ¢ is given by
d
-G = [ ot o,

It is curious to find out the conditions imposed on the function (r(z)).es
under which P, ({¢ < +o00}) =1 for all z € R%.
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In the case of d = 1, formula (27) gives the resolvent kernel for the
process with its transition probability density given by g.

6.2. The pseudo-process

As was mentioned in Section 2, the function Gy cannot be transition proba-
bility density of any Markov process. But it can be considered as that for a
pseudo-process (y(t))i>o in the sense of [1] and the function G constructed
in Section 5 must be connected with that pseudo-process by an analogy to
(48), that is

Ut,z,p) = / G(t,z,y)p(y) dy = E, (w(y(t))e’ﬁf(r)) , t>0, 2 €RY
Rd

where E, denotes “expectation” with respect to the pseudo-process and
(71:(r))e>0 denotes some “additive functional of the pseudo-process (y(t))¢>0”.
In particular,

¢
E e~ () :/ G(t,z,y) dyzl—/ dr/g(r,x,z)r(z)d0z7
R4 0 s

as follows from (43). In other words, the distribution function of 7, (r) is the
same as that of n.(r).
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