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Effective kinetic properties of two-phase heterogeneous media with thermoelectric properties have been
considered. These properties manifest themselves when an electric current and a heat flow coexist in the medium.
It is shown that in some cases, it is possible to generalize the reciprocity relations obtained in the absence of
thermoelectric phenomena and find invariants (combinations of effective thermoelectric coefficients) with respect
to changes in the phase concentration in the two-dimensional case. For the three-dimensional case, using the moving
percolation threshold approach in the mean-field theory, it is shown that similar reciprocity relations (invariants)
can be approximately satisfied when the percolation threshold is shifted.
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Introduction

Research of thermoelectric composites is essential for
developing and improving materials that can convert
thermal energy into electrical energy and vice versa. Such
research has been conducted to improve the efficiency,
durability and environmental safety of thermoelectric
devices [1-5].

The problem of calculating the properties of
composites, in particular the calculation of effective
coefficients, is a complex problem. The exact solution to
the problem of calculating the effective coefficients of
thermoelectric media over the entire range of phase
concentrations with different values of local coefficients
does not have a general exact solution. There are various
approximations that allow, in some cases, to obtain
relatively accurate concentration expressions for effective
coefficients [6-10]. For example, in the case when in a
two-phase composite the concentration of one of the
phases is much less than the other, Maxwell’s
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approximation is a good one [6-7]. Another case is a two-
phase, highly inhomogeneous medium near the
percolation threshold; here, a good description is the
percolation theory (a geometric analogue of the theory of
second-order phase transitions) [10,11]. But in general, in
the entire concentration range only an approximate
description is possible; the successful mean field
approximation or effective medium approximation (EMA)
is most frequently used [12,13,9].

In some cases, it is possible to obtain additional ratios
for the effective coefficients; for example, for a two-
dimensional randomly inhomogeneous medium, the so-

called reciprocity relation was obtained for the
conductivity problem [14].
Widely used methods for calculating the

concentration dependence of effective kinetic coefficients,
such as the mean field method, imply a given (once and
for all) percolation threshold. In real composites it may be
different depending on the method and technology of
composite creation. Here we consider a modification of
the method that allows taking into account the possibility
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of different percolation thresholds. It is shown that in the
three-dimensional case it is possible to generalize the
reciprocity relations — relations that connect effective
conductivity, thermal conductivity and thermoelectric
power.

Our paper examines, on the basis of the isomorphism
method, a generalization of reciprocity ratios in the case
of thermoelectric phenomena and discusses the issue of
similar ratios for three-dimensional media with a shifted
percolation threshold.

I. Effective coefficients of
thermoelectric composites and
methods of their calculation

For a single-flow problem (the problem of effective
conductivity), when Ohm’s law locally takes place,
connecting the electric current density - j - and the electric
field - E, the coefficient of effective conductivity - o,
connects their volume-average values

Jj=0E, {j) = 0.(E). (1)

The main characteristic of composites, including for
thermoelectric phenomena, is effective coefficients. Let's
define them as follows. For thermoelectric phenomena, we
write down the local ratio between the densities of electric
current - j and heat flow - g, electric field - £ and

temperature gradient -g = —gradT
j=oE+yg, s=YE+xs, 2
and in a stationary case
divj=0, divs=0,rot E=0,r0t g =0 3)

Where
y=oa,xy=k/T(1+ZT), s =q/T,Z = o -a?/k, (4)

a - coefficient of thermo emf, k - coefficient of thermal
conductivity and for convenience (symmetry in system
(2)) flow is introduced s = q/T.

Then thermoelectric effective coefficients connect

volume-average local thermodynamic flows and
thermodynamic forces
(]) = Je(E) +ye<g>9 (%)

(s) = Ve(E) + x.(9)

where (...) = 1/V fV ...dV and it is assumed that the size
of the averaging (sample) is much larger than the
correlation length.

For the two-dimensional case of a two-phase single-
flow problem, for example, a conductivity problem in the
absence of a temperature gradient, i.e. in the absence of
thermoelectric phenomena, when Ohm's law j = oF
locally takes place, in [14] a reciprocity relation was
obtained that relates the effective conductivity at different
conductivity values
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0.(p) - 0.(1 —p) = 5105, (6)
where 0, and o, are conductivities of the first and second
phases and p is the concentration of the first phase.

To determine o, in the entire concentration range,
EMA can be used; for the conductivity problem, it is often
called the Bruggeman-Landauer approximation [7,8]. This
approximation can be written as

Oe—02
(d—1)oe+o0,

Oeg—01
(d-1)oe+0q

p+ 1-p)=0 (7

where d=2,3 is the dimension of the problem.

Naturally, the problem of finding the effective
conductivity (single-flow problem) is much simpler than
the problem of finding the thermoelectric effective
coefficients (double-flow problem). If we are talking
about finding the effective coefficients in a thermoelectric
system in the EMA approximation, then for this it is
necessary to find a generalization of (7) for the case of
double-flow systems. One of the possible ways [7,15] is to
introduce matrices of local - {2; and effective - {2, kinetic
coefficients

A i (71491 A Oe gi,a;
;= (O'i'ai ki1+fl-T >, N, = (Ue.ae kel+ieT ), (8)
where i=1,2 signifies the phase number.
Now (2) can be written as
N =(cv)(E
(s) - (Y X) (g)’ ©)

And by analogy with (7), we can write EMA in the
form

De-04

20e+04

De-03
200+0,

(1-p)=0, (10)

Solving the system of equations written in matrix
form (10) allows us to find the concentration dependences
of thermoelectric effective coefficients and their
dependence on local coefficients values in the mean field
approximation.

I1. Isomorphism method

In [2,10,11], another version of the analysis of
thermoelectric phenomena in composites was proposed. It
was shown that the problem of calculating the
thermoelectric effective coefficients of two-phase systems
(two-flow system) can be reduced to the problem of
calculating the effective coefficients of a single-flow
system. In other words, from the concentration behavior
of the effective conductivity (in a problem without
thermoelectric  phenomena), one can find the
concentration behavior of the effective thermoelectric
coefficients in an inhomogeneous medium of the same
geometric structure (the same phase arrangement). The
method of reducing a two-flow problem to a single-flow
one is usually called the isomorphism method. The
isomorphism method can be written in different
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mathematical schemes (see, for example, [10]).

Here we will consider this method as proposed ([17],
see detail in [10]). To reduce a two-flow system to a
single-flow system, multiply the second relation in (2) by
a constant K and add it to the first

j+Ks=(+Ky)E+{y+Kxy)g. 11
Rewriting (11) in the form

. _ . _ ]/+K)(
j+Ks=(0+Ky)(E+w-g), w= P (12)

one can introduce a new flow (current) — i and a new field

—€

i=j+Ks, e=E+w-g. (13)
In the stationary case we are considering, currents and

fields fulfill conditions (3). The introduced current — i and
field — € must fulfill the same conditions.

divi =0,rot e =0. (14).

Because the introduced constant - K by definition does
not depend on the coordinates, the condition (14) for the
current is satisfied automatically, due to the fulfillment of
(3). As for the factor - w in (12), since at different points
of the medium the local coefficients takes on different
values (in the two-phase case this is - a1, 0, @1, @5, k4, k3,)
generally speaking, it depends on the coordinates.
However, it is possible to satisfy the condition of
constancy of this factor (make it independent of the
coordinates) by requiring that the constant - K be a
solution to the equation

Vitky _ v2+Kxe (15)
01+Ky1 021KY>

The solution to equation (15) determines two possible
constants - K;, K;; and the corresponding constants - w;
and wy;

K .= X201= X102/ (X201 —-X102)2—4(x1¥2—X2¥1) ¥102-v201) (16)
L 2(X1Y2—X2Y1)

Now (13) can be written as a single-flow system

i(r) = f(r)- (), (17)

where “current” and “field” obey conditions (14) and the
effective coefficient of which is determined similarly to

)
(i) = f¥e). (18)

The resulting system differs from (1) only in notation.
Thus, if we know the concentration behavior of
conductivity in problem (1) (in a single-flow problem),
then a simple change of notation gives us an expression
for f€. Note that there are actually two systems (18), one
for - K;, w;, the second for -Kj;, w;;. Local coefficients
(analogues of conductivity) of the first and second phases
- f1, and fj; are related to the local coefficients of the TE
system in the following way

fur =01+ Kiva, for =02 + Ky, (19)
respectively, with - K;, w; for the first system and with
- K;;, wy; for the second.

Now, in order to find the effective thermoelectric
coefficients, it is necessary to write (11) in averaged form

)+ Ki(s) = fFKE) + w;{g)),
() + Ky (s) = fif E) + w;(g)), (20)

where

fif = fle(fu:fz,h p), fii =15 (f1,11'f2,11'p),

and to rewrite similarly to (5)

. Kuff-Kiff E Kuff w1=Kiffjon
= —— +—————"9)
<]) Ki—Ki (E) Ki—Kj (g>

fi=ff flion-ff o1
= E 21
{s) Ki—Kp (E) + Ki—Kp (9 1)

Where Kjw; = Ko = —1.

Thus, according to (21), the effective coefficients of
thermoelectric systems are expressed as follows through
the effective coefficient of a single-flow system f°, f;

— Kuff-Kiffy
€ Ki—Ki

_ S

_ fiwu-ffor
e = T, Xe = (22)
Kii—Ki

Ki—Kp

>

Note that the concentration dependence o, from (22)
is found taking into account thermoelectric phenomena
and, naturally, does not coincide, generally speaking, with
the concentration dependence of the effective coefficient -
o, (5) of a single-flow system.

II1. Reciprocity relations for two-
dimensionally inhomogeneous media
with thermoelectric phenomena

To find the thermoelectric analogy of reciprocity
relations in the thermoelectric system, we rewrite (6) in
the form

ff@ff(—p) = f£(1/2)%,
fi@fii(—p) = fi7(1/2)% (23)

Relations (23) already contain certain ratios for
thermoelectric effective coefficients. To write them down
explicitly, we can express f%, fi5 through thermoelectric
effective coefficient; this can be done, for example, like
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this

ft (P) = o, + K0, a,, fﬁ(P) = o, + Kj0.0,, (24)

Substituting (24) into (23), we find TE analogues of
the reciprocity relations

o)1+ Kiae(p)] - 0. (1 — p)[1 + Kja (1 = p)] = {0, (1/2)[1 + K. (1/2)]}?,

o.(®[1+ Kya. ()] 0.(1 = p)[1 + Kya.(1 —p)] = {0.(1/2)[1 + K;;a.(1/2)]}?,

(25)

To illustrate the obtained relations, we give a numerical example; for this we write (25) in normalized form

ge(P)[1+Kjae(p)]'oe(1-p)[1+Kjae(1-D)]
{oe(1/2)[1+K ae(1/2)]}? ’

A,(p) =

A (p) = ALK i)} 011 +K1rg(1-)
1P (0e(1/D)[1+K 1o (1/D)])?

(26)

where, if the reciprocity relations are satisfied, the
normalized expressions - A;(p)and - A;; (p) do not depend
on concentration, i.e. equal to a constant, in this case unity.
For comparison, we write similar expressions for the
effective conductivity and thermo-emf coefficient

ge(p)ge(1-p)

- _ w@ae(-p)
100) =g pmime 490 = =i D
We take the concentration dependences for

thermoelectric effective coefficient from the two-
dimensional EMA. Let us take the numerical values of the
local coefficients thermoelectric coefficients for the
second phase to be close to the values for a semiconductor
with a good quality factor (for example, p-Bi Tes)
o, = 10°0hmDmED, a, =2-10YV/K,
k, =1W/m-K, at T = 300K with the quality factor of
the second phase Z,T = 1.2 [18]. And we will choose the
first phase as metal, i.e. with a practically zero value of the
local thermo-emf coefficient -o; = 5 - 1060hmYmD,
a, =0V/K, k; =40W/m-K.

As can be seen from Fig. 1, the concentration
dependence of A;(p) and A;;(p)is absent, while the
expressions Ac(p) and Aa(p) significantly depend on
concentration. Thus, expressions (26) are indeed
thermoelectric analogues of reciprocity relations.

IV. Effective Medium Approximation
problem for composites with various
percolation thresholds

Unlike, for example, the critical indices that
characterize the concentration behavior of the effective
coefficient in the critical region of percolation theory,
which are universal (i.e., depending only on the
dimensionality of the problem), the percolation threshold
- p. for different composites (and when modeling on
different lattices) can have different values [6,11].

For the standard version of EMA (7), with large
heterogeneity (o;, o) in a certain concentration region,
there is a sharp change in the concentration dependence of
the effective conductivity. These concentration values are
compared with the percolation threshold - p. in
percolation media in the critical region. In the standard
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version of EMA (7), these values p. are implicitly
included in the equation; in two- and three-dimensional
cases they are equal

pc(2d) =1/2, p.(3d)=1/3 (28)
15
Ao(p) |
1 =
AfP) .
; e b Ac(p)
, | - Aa(p)
{ \ —Afp)
0'5 | / \\\
Aap) .
0 it L | L L et Vi |
0,0 0,2 0,4 0,6 0,8 1,0
p

Fig. 1. Functions of concentration dependencies A;(p)
(red online), Aa(p) (Blue online), Ao (p) (Black online).

To describe situations when, for example, there is a
need to describe experimental data obtained for a medium
with a percolation threshold different from those
indicated, a modification of EMA for the three-
dimensional case was proposed in [19], which allows one
to set the percolation threshold. This modification can be
written in the form [20]

Oe—01 Te—02

200+ 200+

Pt = (1-p)=0  (29)
e Po)yy o 1+c®Pe)yg 10

where c(p, p.) is Sarychev-Vinogradov term that can be
written as

c(p.p) = (1 - 3p,) (pﬁ)” (22)'

—— (30)

In [20-22], the modified approximation (29-30) was
used to calculate the effective properties of magnetic
elastomers, in which restructuring occurs in an external
magnetic field. To describe this restructuring, the concept
of a moving percolation threshold was introduced based
on (30).

When describing thermoelectric properties, the EMA
modification can be used to study the possibility of the
existence of reciprocity relations at different values of the
percolation threshold.
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V. Reciprocity relations in three-
dimensional thermoelectric
composites with a shifted percolation
threshold

It should be immediately emphasized that the issue of
reciprocity relations is considered within the framework
of an approximate theory - modified EMA.

Let's first consider a single-flow problem. Similarly to
(24), we introduce a normalized relation for

o.(p)o.(1-p)

ge(p)oe(1-p)
[Ue(Pc=ﬁc)]2 i

Ao(p,pc) = €2))

where P, is a given percolation threshold in the
description of the concentration dependence g, (p) within
the framework of a modified EMA, when the effective
conductivity depends on the given percolation threshold.
Naturally, when given - p. = 1/3, the modified EMA
transforms into its standard form (7). Note that the value
of effective conductivity at any concentration value (even
far from the percolation threshold) also depends on the
value of the given - p,.

Figure 2 shows the concentration behavior Ao (p),
and it is clear that Ao (p) is closer to the constant, when
the given percolation threshold is closer to the value '%.

Let us rewrite (25) in general form, when the
normalization (right-hand side) is a function of the
specified percolation threshold

o)1+ Kia.(p)]- 0.(1 - p)[1 + K;a.(1 - p)] = {0 (B [1 + Kiae (pPc)1},

o.(P)[1 + Kya.(p)] - 0.(1 = p)[1 + Kya.(1 — p)] = {o. (@)1 + K. (0D}

0,1

S s

0’01 1 1 1 1 1

Fig. 2. Concentration dependency of function Aa(p, B, )
at different concentration value p. = 1/4 (Black online),
p. =1/4 (Red online), p. =1/3 (Green online),
Pe = 2/3 (Blue online), p. = 3/4 (Magenta online).

And similarly to (26), let’s consider the normalized
relations - A;(p, B ), A;;(p, D¢ ), which will now depend
on the given percolation threshold

Te(P)[1+K e (p)]-0e(1-D)[1+K ae(1-D)]
{ge(Bo)[1+Kae (PP )]}

Al(p’ ﬁC ) =

>

Te@1+Kp1ae(P)]oe(1-p)[1+K11cte(1-p)]
{oe@[1+K 1106 PPOIY

Ay(p,pe) = (33)

and similar relations for effective conductivity (31) and
thermo-emf

ae(p)ae(1-p)

[@e(pc=1/2)]%" (34)

Aa(p,p.) =

Note that the thermoelectrics effective coefficients in
the three-dimensional case under consideration in (31-34)
were obtained by the isomorphism method in the modified
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(32)

EMA approximation (29-30).
In Fig.3 concentration dependences are shown -
A (p, D), Ay (p, e ) at different values P

15

0 1 1 1 1 ]
02 04 06 08 1

p,p=1/2

Fig. 3. Concentration dependencies  of functions
A/(p,B.) (Red online), A;(p,p.) (Blue online),
Ao (p, . ) (Black online), Aa(p, P, ) (Green online).

As can be seen from Fig.3, as in the single-flow three-
dimensional case, the reciprocity relations for
thermoelectric effective coefficients systems are fulfilled
the better, the closer the specified flow threshold is to 5.

V1. Discussion

Two- and three-dimensional random media
(composites) with different percolation thresholds are
considered. For a two-dimensional medium in the
standard case, an analogue for thermoelectric effective
coefficients has been rigorously found.

In the three-dimensional case,

when studying
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reciprocity relations for both the single-flow case
(conductivity) and the two-flow case (thermoelectric
phenomena), one has to resort to a modification of the
standard method for calculating the effective coefficient,
which allows one to consider media with different,
predetermined percolation thresholds. Within the
framework of the modified EMA, the existence of
approximate reciprocity relations for thermoelectric
phenomena in media with a percolation threshold of 2 was
shown.

A separate question is the study of the possibility of
the existence of analogues of the reciprocity relation in the
problem of elasticity, when the composite consists of two
chaotically situated phases with different values of local
elastic moduli. The problem is complicated by the fact that
in the simplest two-dimensional case, the EMA
approximation (also called the Budyansky approximation
in this problem) [15] does not give the percolation
threshold of 4, which would seem logical for a mutually

Conclusions

Experimental determination of the concentration
dependence of the differential thermoelectric power
coefficient is more complicated than, for example,
determining  specific  conductivity. The obtained
reciprocity relations allow us to relate these coefficients to
each other, which can also be used for the correct design
of thermoelectric composites, optimization of their
characteristics and increasing the efficiency of
thermoelectric devices.
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CniBBITHOIICHHS B3A€EMHOCTI B TEPMOECJEKTPUYHUX KOMIIO3UTAX:
ONTUMI3auis MaTepiajiB sl eHeProe)eKTUHBHOCTI Ta YIPABJIIHHSA TEIIOBOIO
eHeprier

!Hayionanenuii mexuiunuii ynicepcumem Yxpainu « Kuiscoxuti nonimexunivnuti incmumym imeni leops Cikopcbkozoy,

m. Kuis, Ykpaina, im_ivan@ukr.net

2Inemumym peecmpayii ingpopmayii Hayionanenoi axademii nayk Yrpainu, m. Kuis, Yrpaina

Bynmu posrisiHyTi edekTHBHI KiHETHYHI BIACTHBOCTI IBO(A3HHUX TI'€TEPOr€HHUX CEPEIOBHII 3 Pi3HUMH
TEPMOEJICKTPUYHUMHE BIACTUBOCTAMHU. Li BIaCTHBOCTI IPOSBIAIOTE cebe, KOJM eNeKTPUYHHMIT CTPYM Ta TEIJIOBHit
TIOTIK CHIBICHYIOTb Y IIboMY cepenoBuili. [loka3aHo, 1110 B AESKUX BUINAIKAX BUSBISETHCSI MOKIMBUM y3aralbHUTH
CHiBBiIHOLICHHS B3a€MHOCTI, OTPUMaHi 3a B1ICYTHOCT1 TEPMOJICKTPUYHUX SIBUIL, 1 3HANTH iHBapiaHTH (KoMOiHaIl{
e(eKTHBHUX TEPMOENEKTPHIHNX KOe(ili€HTIB) BITHOCHO 3MiHM KOHIIEHTpAIii y JBOBUMIPHOMY BHMAAKy. Y
TPUBHMIPHOMY BHMIAJKy, BUKOPUCTOBYIOYM IiJXiJ PYyXOMOTO TOpOTy MPOTIKaHHS y Teopii cepeqHbOro moJs,
MMOKA3aHO, 10 CX0Ki CIiBBIIHOMIEHHS B3a€MHOCTI (iHBapiaHTH) MOXYTh OYTH HaOIMKEHO 33I0BOJICHI, KOJIU IOPIT
MIPOTIKaHHS 3CYBAETHCS

KmouoBi cioBa: TepMmoenekTprka, KOMIIO3UTH, TPOTIKAHHS, KIHCTUIHUN KOCQIIli€HT.
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