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Introduction 

Research of thermoelectric composites is essential for 

developing and improving materials that can convert 

thermal energy into electrical energy and vice versa. Such 

research has been conducted to improve the efficiency, 

durability and environmental safety of thermoelectric 

devices [1-5]. 

The problem of calculating the properties of 

composites, in particular the calculation of effective 

coefficients, is a complex problem. The exact solution to 

the problem of calculating the effective coefficients of 

thermoelectric media over the entire range of phase 

concentrations with different values of local coefficients 

does not have a general exact solution. There are various 

approximations that allow, in some cases, to obtain 

relatively accurate concentration expressions for effective 

coefficients [6-10]. For example, in the case when in a 

two-phase composite the concentration of one of the 

phases is much less than the other, Maxwell’s 

approximation is a good one [6-7]. Another case is a two-

phase, highly inhomogeneous medium near the 

percolation threshold; here, a good description is the 

percolation theory (a geometric analogue of the theory of 

second-order phase transitions) [10,11]. But in general, in 

the entire concentration range only an approximate 

description is possible; the successful mean field 

approximation or effective medium approximation (EMA) 

is most frequently used [12,13,9]. 

In some cases, it is possible to obtain additional ratios 

for the effective coefficients; for example, for a two-

dimensional randomly inhomogeneous medium, the so-

called reciprocity relation was obtained for the 

conductivity problem [14]. 

Widely used methods for calculating the 

concentration dependence of effective kinetic coefficients, 

such as the mean field method, imply a given (once and 

for all) percolation threshold. In real composites it may be 

different depending on the method and technology of 

composite creation. Here we consider a modification of 

the method that allows taking into account the possibility 
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of different percolation thresholds. It is shown that in the 

three-dimensional case it is possible to generalize the 

reciprocity relations – relations that connect effective 

conductivity, thermal conductivity and thermoelectric 

power. 

Our paper examines, on the basis of the isomorphism 

method, a generalization of reciprocity ratios in the case 

of thermoelectric phenomena and discusses the issue of 

similar ratios for three-dimensional media with a shifted 

percolation threshold. 

I. Effective coefficients of 

thermoelectric composites and 

methods of their calculation 

For a single-flow problem (the problem of effective 

conductivity), when Ohm’s law locally takes place, 

connecting the electric current density - j - and the electric 

field - E, the coefficient of effective conductivity - 𝜎𝑒 

connects their volume-average values 

 

 𝑗 = 𝜎𝐸,  〈𝑗〉 = 𝜎𝑒〈𝐸〉.   (1) 

 

The main characteristic of composites, including for 

thermoelectric phenomena, is effective coefficients. Let's 

define them as follows. For thermoelectric phenomena, we 

write down the local ratio between the densities of electric 

current - j and heat flow - q, electric field - E and 

temperature gradient -𝑔 = −𝑔𝑟𝑎𝑑𝑇  
 

 𝑗 = 𝜎𝐸 + 𝛾𝑔,     s = γ𝐸 + χg,   (2) 

 

and in a stationary case 

 

 𝑑𝑖𝑣 𝑗 = 0,  𝑑𝑖𝑣 𝑠 = 0, 𝑟𝑜𝑡 𝐸 = 0, 𝑟𝑜𝑡 𝑔 = 0   (3) 

 

Where 

 

𝛾 = 𝜎𝛼, 𝜒 = 𝑘/𝑇(1 + 𝑍𝑇),  𝑠 = 𝑞/𝑇, 𝑍 = 𝜎 ∙ 𝛼2/𝑘,  (4) 

 

𝛼 - coefficient of thermo emf, 𝑘 - coefficient of thermal 

conductivity and for convenience (symmetry in system 

(2)) flow is introduced  𝑠 = 𝑞/𝑇. 

Then thermoelectric effective coefficients connect 

volume-average local thermodynamic flows and 

thermodynamic forces 

 

 〈𝑗〉 = 𝜎𝑒〈𝐸〉 + 𝛾𝑒〈𝑔〉,  (5) 

 

 〈𝑠〉 = 𝛾𝑒〈𝐸〉 + 𝜒𝑒〈𝑔〉  

 

where 〈… 〉 = 1/𝑉 ∫ … 𝑑𝑉
𝑉

 and it is assumed that the size 

of the averaging (sample) is much larger than the 

correlation length. 

For the two-dimensional case of a two-phase single-

flow problem, for example, a conductivity problem in the 

absence of a temperature gradient, i.e. in the absence of 

thermoelectric phenomena, when Ohm's law 𝑗 = 𝜎𝐸 

locally takes place, in [14] a reciprocity relation was 

obtained that relates the effective conductivity at different 

conductivity values 

 

 𝜎𝑒(𝑝) ∙ 𝜎𝑒(1 − 𝑝) = 𝜎1𝜎2,  (6) 

 

where 𝜎1 and 𝜎2 are conductivities of the first and second 

phases and p is the concentration of the first phase.  

To determine 𝜎𝑒 in the entire concentration range, 

EMA can be used; for the conductivity problem, it is often 

called the Bruggeman-Landauer approximation [7,8]. This 

approximation can be written as 

 

 
𝜎𝑒−𝜎1

(𝑑−1)𝜎𝑒+𝜎1
𝑝 +

𝜎𝑒−𝜎2

(𝑑−1)𝜎𝑒+𝜎2
(1 − 𝑝) = 0 (7) 

 

where d=2,3  is the dimension of the problem. 

Naturally, the problem of finding the effective 

conductivity (single-flow problem) is much simpler than 

the problem of finding the thermoelectric effective 

coefficients (double-flow problem). If we are talking 

about finding the effective coefficients in a thermoelectric 

system in the EMA approximation, then for this it is 

necessary to find a generalization of (7) for the case of 

double-flow systems. One of the possible ways [7,15] is to 

introduce matrices of local - 𝛺̂𝑖 and effective - 𝛺̂𝑒 kinetic 

coefficients 

 

 𝛺̂𝑖 = (
𝜎𝑖        𝜎𝑖,𝛼𝑖

𝜎𝑖 ,𝛼𝑖  𝑘𝑖
1+𝑍𝑖𝑇

𝑇

  ), 𝛺̂𝑒 = (
𝜎𝑒       𝜎𝑖 ,𝛼𝑖

𝜎𝑒,𝛼𝑒  𝑘𝑒
1+𝑍𝑒𝑇

𝑇

  ),   (8) 

 

where i=1,2 signifies the phase number.  

Now (2) can be written as  

 

 (𝑗
𝑠
) = (𝜎   𝛾

𝛾  𝜒
) (𝐸

𝑔
),   (9) 

 

And by analogy with (7), we can write EMA in the 

form 

 

 
𝛺̂𝑒−𝛺̂1

2𝛺̂𝑒+𝛺̂1
𝑝 +

𝛺̂𝑒−𝛺̂2

2𝛺̂𝑒+𝛺̂2
(1 − 𝑝) = 0,  (10) 

 

Solving the system of equations written in matrix 

form (10) allows us to find the concentration dependences 

of thermoelectric effective coefficients and their 

dependence on local coefficients values in the mean field 

approximation. 

II. Isomorphism method 

In [2,10,11], another version of the analysis of 

thermoelectric phenomena in composites was proposed. It 

was shown that the problem of calculating the 

thermoelectric effective coefficients of two-phase systems 

(two-flow system) can be reduced to the problem of 

calculating the effective coefficients of a single-flow 

system. In other words, from the concentration behavior 

of the effective conductivity (in a problem without 

thermoelectric phenomena), one can find the 

concentration behavior of the effective thermoelectric 

coefficients in an inhomogeneous medium of the same 

geometric structure (the same phase arrangement). The 

method of reducing a two-flow problem to a single-flow 

one is usually called the isomorphism method. The 

isomorphism method can be written in different 
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mathematical schemes (see, for example, [10]). 

Here we will consider this method as proposed ([17], 

see detail in [10]). To reduce a two-flow system to a 

single-flow system, multiply the second relation in (2) by 

a constant K and add it to the first 

 

 𝑗 + 𝐾𝑠 = (𝜎 + 𝐾𝛾)𝐸 + (𝛾 + 𝐾𝜒)𝑔.   (11) 

 

Rewriting (11) in the form  

 

𝑗 + 𝐾𝑠 = (𝜎 + 𝐾𝛾)(𝐸 + 𝜔 ∙ 𝑔),  𝜔 =
𝛾+𝐾𝜒

𝜎+𝐾𝛾
  (12) 

 

one can introduce a new flow (current) – i  and a new field 

– 𝜀 

 

 𝑖 = 𝑗 + 𝐾𝑠,   𝜀 = 𝐸 + 𝜔 ∙ 𝑔.    (13) 

 

In the stationary case we are considering, currents and 

fields fulfill conditions (3). The introduced current – i and 

field – 𝜀 must fulfill the same conditions. 

 

 𝑑𝑖𝑣 𝑖 = 0, 𝑟𝑜𝑡 𝜀 = 0. (14) . 

 

Because the introduced constant - K by definition does 

not depend on the coordinates, the condition (14) for the 

current is satisfied automatically, due to the fulfillment of 

(3). As for the factor - 𝜔 in (12), since at different points 

of the medium the local coefficients takes on different 

values (in the two-phase case this is - 𝜎1, 𝜎2, 𝛼1, 𝛼2, 𝑘1, 𝑘2,) 
generally speaking, it depends on the coordinates. 

However, it is possible to satisfy the condition of 

constancy of this factor (make it independent of the 

coordinates) by requiring that the constant - K be a 

solution to the equation 

 

 
𝛾1+𝐾𝜒1

𝜎1+𝐾𝛾1
=

𝛾2+𝐾𝜒2

𝜎2+𝐾𝛾2
   (15) 

 

The solution to equation (15) determines two possible 

constants - 𝐾𝐼, 𝐾𝐼𝐼 and the corresponding constants - 𝜔𝐼 

and 𝜔𝐼𝐼 
 

 𝐾𝐼,𝐼𝐼 =
𝜒2𝜎1−𝜒1𝜎2±√(𝜒2𝜎1−𝜒1𝜎2)2−4(𝜒1𝛾2−𝜒2𝛾1)(𝛾1𝜎2−𝛾2𝜎1)

2(𝜒1𝛾2−𝜒2𝛾1)
   (16)

 

Now (13) can be written as a single-flow system  

 

 𝑖(𝑟) = 𝑓(𝑟) ∙ 𝜀(𝑟),  (17) 

 

where “current” and “field” obey conditions (14) and the 

effective coefficient of which is determined similarly to 

(5) 

 

 〈𝑖〉 = 𝑓𝑒〈𝜀〉. (18) 

 

The resulting system differs from (1) only in notation. 

Thus, if we know the concentration behavior of 

conductivity in problem (1) (in a single-flow problem), 

then a simple change of notation gives us an expression 

for 𝑓𝑒 . Note that there are actually two systems (18), one 

for - 𝐾𝐼 , 𝜔𝐼, the second for -𝐾𝐼𝐼 , 𝜔𝐼𝐼. Local coefficients 

(analogues of conductivity) of the first and second phases 

- 𝑓𝐼 ,  and 𝑓𝐼𝐼  are related to the local coefficients of the TE 

system in the following way 

 

 𝑓1,𝐼 = 𝜎1 + 𝐾𝐼𝛾1,  𝑓2,𝐼 = 𝜎2 + 𝐾𝐼𝛾2,   (19) 

 

respectively, with - 𝐾𝐼 , 𝜔𝐼 for the first system and with   

- 𝐾𝐼𝐼 , 𝜔𝐼𝐼  for the second. 

Now, in order to find the effective thermoelectric 

coefficients, it is necessary to write (11) in averaged form 

 

 〈𝑗〉 + 𝐾𝐼〈𝑠〉 = 𝑓𝐼
𝑒(〈𝐸〉 + 𝜔𝐼〈𝑔〉),  

 

 〈𝑗〉 + 𝐾𝐼𝐼〈𝑠〉 = 𝑓𝐼𝐼
𝑒(〈𝐸〉 + 𝜔𝐼𝐼〈𝑔〉),   (20) 

 

where  

 

 𝑓𝐼
𝑒 = 𝑓𝐼

𝑒(𝑓1,𝐼 , 𝑓2,𝐼 , 𝑝),  𝑓𝐼𝐼
𝑒 = 𝑓𝐼𝐼

𝑒(𝑓1,𝐼𝐼 , 𝑓2,𝐼𝐼 , 𝑝),   

 

and to rewrite similarly to (5) 

 

 〈𝑗〉 =
𝐾𝐼𝐼𝑓𝐼

𝑒−𝐾𝐼𝑓𝐼
𝑒

𝐾𝐼𝐼−𝐾𝐼
〈𝐸〉 +

𝐾𝐼𝐼𝑓𝐼
𝑒𝜔𝐼−𝐾𝐼𝑓𝐼𝐼

𝑒𝜔𝐼𝐼

𝐾𝐼𝐼−𝐾𝐼
〈𝑔〉,    

 

 〈𝑠〉 =
𝑓𝐼𝐼

𝑒−𝑓𝐼
𝑒

𝐾𝐼𝐼−𝐾𝐼
〈𝐸〉 +

𝑓𝐼𝐼
𝑒𝜔𝐼𝐼−𝑓𝐼

𝑒𝜔𝐼

𝐾𝐼𝐼−𝐾𝐼
〈𝑔〉  (21)  

 

Where  𝐾𝐼𝐼𝜔𝐼 = 𝐾𝐼𝜔𝐼𝐼 = −1. 

Thus, according to (21), the effective coefficients of 

thermoelectric systems are expressed as follows through 

the effective coefficient of a single-flow system 𝑓𝐼
𝑒, 𝑓𝐼𝐼

𝑒  

 

 𝜎𝑒 =
𝐾𝐼𝐼𝑓𝐼

𝑒−𝐾𝐼𝑓𝐼𝐼
𝑒

𝐾𝐼𝐼−𝐾𝐼
,   𝛾𝑒 =

𝑓𝐼𝐼
𝑒−𝑓𝐼

𝑒

𝐾𝐼𝐼−𝐾𝐼
,  𝜒𝑒 =

𝑓𝐼𝐼
𝑒𝜔𝐼𝐼−𝑓𝐼

𝑒𝜔𝐼

𝐾𝐼𝐼−𝐾𝐼
   (22) 

 

Note that the concentration dependence  𝜎𝑒 from (22) 

is found taking into account thermoelectric phenomena 

and, naturally, does not coincide, generally speaking, with 

the concentration dependence of the effective coefficient -

𝜎𝑒 (5) of a single-flow system. 

III. Reciprocity relations for two-

dimensionally inhomogeneous media 

with thermoelectric phenomena 

To find the thermoelectric analogy of reciprocity 

relations in the thermoelectric system, we rewrite (6) in 

the form 

 𝑓𝐼
𝑒(𝑝)𝑓𝐼

𝑒(1 − 𝑝) = 𝑓𝐼
𝑒(1/2)2,   

 

 𝑓𝐼𝐼
𝑒(𝑝)𝑓𝐼𝐼

𝑒(1 − 𝑝) = 𝑓𝐼𝐼
𝑒(1/2)2.   (23) 

 

Relations (23) already contain certain ratios for 

thermoelectric effective coefficients. To write them down 

explicitly, we can express 𝑓𝐼
𝑒 , 𝑓𝐼𝐼

𝑒  through thermoelectric 

effective coefficient; this can be done, for example, like 
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this 

 

 𝑓𝐼
𝑒(𝑝) = 𝜎𝑒 + 𝐾𝐼𝜎𝑒𝛼𝑒,  𝑓𝐼𝐼

𝑒(𝑝) = 𝜎𝑒 + 𝐾𝐼𝐼𝜎𝑒𝛼𝑒,  (24) 

Substituting (24) into (23), we find TE analogues of 

the reciprocity relations

 

 𝜎𝑒(𝑝)[1 + 𝐾𝐼𝛼𝑒(𝑝)] ∙ 𝜎𝑒(1 − 𝑝)[1 + 𝐾𝐼𝛼𝑒(1 − 𝑝)] = {𝜎𝑒(1/2)[1 + 𝐾𝐼𝛼𝑒(1/2)]}2,    

 

 𝜎𝑒(𝑝)[1 + 𝐾𝐼𝐼𝛼𝑒(𝑝)] ∙ 𝜎𝑒(1 − 𝑝)[1 + 𝐾𝐼𝐼𝛼𝑒(1 − 𝑝)] = {𝜎𝑒(1/2)[1 + 𝐾𝐼𝐼𝛼𝑒(1/2)]}2,   (25) 

 

To illustrate the obtained relations, we give a numerical example; for this we write (25) in normalized form

 

 𝛬𝐼(𝑝) =
𝜎𝑒(𝑝)[1+𝐾𝐼𝛼𝑒(𝑝)]∙𝜎𝑒(1−𝑝)[1+𝐾𝐼𝛼𝑒(1−𝑝)]

{𝜎𝑒(1/2)[1+𝐾𝐼𝛼𝑒(1/2)]}2 ,  

 

 𝛬𝐼𝐼(𝑝) =
𝜎𝑒(𝑝)[1+𝐾𝐼𝐼𝛼𝑒(𝑝)]∙𝜎𝑒(1−𝑝)[1+𝐾𝐼𝐼𝛼𝑒(1−𝑝)]

{𝜎𝑒(1/2)[1+𝐾𝐼𝐼𝛼𝑒(1/2)]}2 .  (26) 

 

where, if the reciprocity relations are satisfied, the 

normalized expressions - 𝛬𝐼(𝑝)and - 𝛬𝐼𝐼(𝑝) do not depend 

on concentration, i.e. equal to a constant, in this case unity. 

For comparison, we write similar expressions for the 

effective conductivity and thermo-emf coefficient 

 

 𝛬𝜎(𝑝) =
𝜎𝑒(𝑝)𝜎𝑒(1−𝑝)

[𝜎𝑒(𝑝𝑐=1/2)]2,    𝛬𝛼(𝑝) =
𝛼𝑒(𝑝)𝛼𝑒(1−𝑝)

[𝛼𝑒(𝑝𝑐=1/2)]2   (27) 

 

We take the concentration dependences for 

thermoelectric effective coefficient from the two-

dimensional EMA. Let us take the numerical values of the 

local coefficients thermoelectric coefficients for the 

second phase to be close to the values for a semiconductor 

with a good quality factor (for example, p-Bi2Te3)  

𝜎2 = 105𝑂ℎ𝑚(−1)𝑚(−1), 𝛼2 = 2 ∙ 10(−4)𝑉/𝐾,  
𝑘2 = 1𝑊/𝑚 ∙ 𝐾, at  𝑇 = 300𝐾 with the quality factor of 

the second phase 𝑍2𝑇 = 1.2 [18]. And we will choose the 

first phase as metal, i.e. with a practically zero value of the 

local thermo-emf coefficient -𝜎1 = 5 ∙ 106𝑂ℎ𝑚(−1)𝑚(−1), 
𝛼1 = 0 𝑉/𝐾, 𝑘1 = 40𝑊/𝑚 ∙ 𝐾. 

As can be seen from Fig. 1, the concentration 

dependence of  𝛬𝐼(𝑝) and 𝛬𝐼𝐼(𝑝)is absent, while the 

expressions 𝛬𝜎(𝑝) and 𝛬𝛼(𝑝) significantly depend on 

concentration. Thus, expressions (26) are indeed 

thermoelectric analogues of reciprocity relations. 

IV. Effective Medium Approximation 

problem for composites with various 

percolation thresholds  

Unlike, for example, the critical indices that 

characterize the concentration behavior of the effective 

coefficient in the critical region of percolation theory, 

which are universal (i.e., depending only on the 

dimensionality of the problem), the percolation threshold 

- 𝑝𝑐 for different composites (and when modeling on 

different lattices) can have different values [6,11]. 

For the standard version of EMA (7), with large 

heterogeneity (𝜎1, 𝜎2) in a certain concentration region, 

there is a sharp change in the concentration dependence of 

the effective conductivity. These concentration values are 

compared with the percolation threshold - 𝑝𝑐 in 

percolation media in the critical region. In the standard 

version of EMA (7), these values 𝑝𝑐 are implicitly 

included in the equation; in two- and three-dimensional 

cases they are equal 

 

 𝑝𝑐(2𝑑) = 1/2,     𝑝𝑐(3𝑑) = 1/3    (28) 

 

 
Fig. 1. Functions of  concentration dependencies 𝛬𝐼(𝑝) 

(red online), 𝛬𝛼(𝑝) (Blue online), 𝛬𝜎(𝑝) (Black online).  

 

To describe situations when, for example, there is a 

need to describe experimental data obtained for a medium 

with a percolation threshold different from those 

indicated, a modification of EMA for the three-

dimensional case was proposed in [19], which allows one 

to set the percolation threshold. This modification can be 

written in the form [20] 

 

 

𝜎𝑒−𝜎1
2𝜎𝑒+𝜎1

1+𝑐(𝑝,𝑝̃𝑐)
𝜎𝑒−𝜎1

2𝜎𝑒+𝜎1

𝑝 +

𝜎𝑒−𝜎2
2𝜎𝑒+𝜎2

1+𝑐(𝑝,𝑝̃𝑐)
𝜎𝑒−𝜎2

2𝜎𝑒+𝜎2

(1 − 𝑝) = 0  (29) 

 

where 𝑐(𝑝, 𝑝̃𝑐) is Sarychev-Vinogradov term that can be 

written as  

 

 𝑐(𝑝, 𝑝̃𝑐) = (1 − 3𝑝̃𝑐) (
𝑝

𝑝̃𝑐
)

𝑝̃𝑐

(
1−𝑝

1−𝑝̃𝑐
)

1−𝑝̃𝑐

  (30)  

 

In [20-22], the modified approximation (29-30) was 

used to calculate the effective properties of magnetic 

elastomers, in which restructuring occurs in an external 

magnetic field. To describe this restructuring, the concept 

of a moving percolation threshold was introduced based 

on (30). 

When describing thermoelectric properties, the EMA 

modification can be used to study the possibility of the 

existence of reciprocity relations at different values of the 

percolation threshold. 
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V. Reciprocity relations in three-

dimensional thermoelectric 

composites with a shifted percolation 

threshold 

It should be immediately emphasized that the issue of 

reciprocity relations is considered within the framework 

of an approximate theory - modified EMA.  

Let's first consider a single-flow problem. Similarly to 

(24), we introduce a normalized relation for - 

𝜎𝑒(𝑝)𝜎𝑒(1 − 𝑝) 

 

 𝛬𝜎(𝑝, 𝑝̃𝑐  ) =
𝜎𝑒(𝑝)𝜎𝑒(1−𝑝)

[𝜎𝑒(𝑝𝑐=𝑝̃𝑐)]2 ,   (31) 

 

where 𝑝̃𝑐   is a given percolation threshold in the 

description of the concentration dependence 𝜎𝑒(𝑝)  within 

the framework of a modified EMA, when the effective 

conductivity depends on the given percolation threshold. 

Naturally, when given - 𝑝̃𝑐 = 1/3, the modified EMA 

transforms into its standard form (7). Note that the value 

of effective conductivity at any concentration value (even 

far from the percolation threshold) also depends on the 

value of the given - 𝑝̃𝑐. 

Figure 2 shows the concentration behavior 𝛬𝜎(𝑝), 

and it is clear that 𝛬𝜎(𝑝) is closer to the constant, when 

the given percolation threshold is closer to the value ½. 

Let us rewrite (25) in general form, when the 

normalization (right-hand side) is a function of the 

specified percolation threshold

 

 𝜎𝑒(𝑝)[1 + 𝐾𝐼𝛼𝑒(𝑝)] ∙ 𝜎𝑒(1 − 𝑝)[1 + 𝐾𝐼𝛼𝑒(1 − 𝑝)] = {𝜎𝑒(𝑝̃𝑐)[1 + 𝐾𝐼𝛼𝑒(𝑝𝑝̃𝑐)]}2,   

 

 𝜎𝑒(𝑝)[1 + 𝐾𝐼𝐼𝛼𝑒(𝑝)] ∙ 𝜎𝑒(1 − 𝑝)[1 + 𝐾𝐼𝐼𝛼𝑒(1 − 𝑝)] = {𝜎𝑒(𝑝̃𝑐)[1 + 𝐾𝐼𝐼𝛼𝑒(𝑝𝑝̃𝑐)]}2    (32)

 

 

 
Fig. 2. Concentration dependency of function 𝛬𝜎(𝑝, 𝑝̃𝑐  ) 

at different concentration value 𝑝̃𝑐 = 1/4  (Black online), 

𝑝̃𝑐 = 1/4 (Red online), 𝑝̃𝑐 = 1/3  (Green online),  

𝑝̃𝑐 = 2/3  (Blue online), 𝑝̃𝑐 = 3/4  (Magenta online). 

 

And similarly to (26), let’s consider the normalized 

relations - 𝛬𝐼(𝑝, 𝑝̃𝑐  ), 𝛬𝐼𝐼(𝑝, 𝑝̃𝑐  ), which will now depend 

on the given percolation threshold  

 

 𝛬𝐼(𝑝, 𝑝̃𝑐  ) =
𝜎𝑒(𝑝)[1+𝐾𝐼𝛼𝑒(𝑝)]∙𝜎𝑒(1−𝑝)[1+𝐾𝐼𝛼𝑒(1−𝑝)]

{𝜎𝑒(𝑝̃𝑐)[1+𝐾𝐼𝛼𝑒(𝑝𝑝̃𝑐)]}2 ,   

 

𝛬𝐼𝐼(𝑝, 𝑝̃𝑐  ) =
𝜎𝑒(𝑝)[1+𝐾𝐼𝐼𝛼𝑒(𝑝)]∙𝜎𝑒(1−𝑝)[1+𝐾𝐼𝐼𝛼𝑒(1−𝑝)]

{𝜎𝑒(𝑝̃𝑐)[1+𝐾𝐼𝐼𝛼𝑒(𝑝𝑝̃𝑐)]}2 .  (33) 

 

and similar relations for effective conductivity (31) and 

thermo-emf 

 

 𝛬𝛼(𝑝, 𝑝̃𝑐  ) =
𝛼𝑒(𝑝)𝛼𝑒(1−𝑝)

[𝛼𝑒(𝑝𝑐=1/2)]2.    (34) 

 

Note that the thermoelectrics effective coefficients in 

the three-dimensional case under consideration in (31-34) 

were obtained by the isomorphism method in the modified 

EMA approximation (29-30). 

In Fig.3 concentration dependences are shown -  

𝛬𝐼(𝑝, 𝑝̃𝑐  ), 𝛬𝐼𝐼(𝑝, 𝑝̃𝑐  ) at different values 𝑝̃𝑐.  

 

 
Fig. 3. Concentration dependencies  of functions 

𝛬𝐼(𝑝, 𝑝̃𝑐  ) (Red online), 𝛬𝐼𝐼(𝑝, 𝑝̃𝑐  ) (Blue online), 

𝛬𝜎(𝑝, 𝑝̃𝑐  ) (Black online), 𝛬𝛼(𝑝, 𝑝̃𝑐  ) (Green online).  

 

As can be seen from Fig.3, as in the single-flow three-

dimensional case, the reciprocity relations for 

thermoelectric effective coefficients systems are fulfilled 

the better, the closer the specified flow threshold is to ½. 

VI. Discussion  

Two- and three-dimensional random media 

(composites) with different percolation thresholds are 

considered. For a two-dimensional medium in the 

standard case, an analogue for thermoelectric effective 

coefficients has been rigorously found. 

In the three-dimensional case, when studying 
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reciprocity relations for both the single-flow case 

(conductivity) and the two-flow case (thermoelectric 

phenomena), one has to resort to a modification of the 

standard method for calculating the effective coefficient, 

which allows one to consider media with different, 

predetermined percolation thresholds. Within the 

framework of the modified EMA, the existence of 

approximate reciprocity relations for thermoelectric 

phenomena in media with a percolation threshold of ½ was 

shown. 

A separate question is the study of the possibility of 

the existence of analogues of the reciprocity relation in the 

problem of elasticity, when the composite consists of two 

chaotically situated phases with different values of local 

elastic moduli. The problem is complicated by the fact that 

in the simplest two-dimensional case, the EMA 

approximation (also called the Budyansky approximation 

in this problem) [15] does not give the percolation 

threshold of ½, which would seem logical for a mutually 

equivalent arrangement of phases. Therefore, the question 

of the existence of reciprocity relations for effective elastic 

moduli is of interest already in the two-dimensional case. 

Conclusions 

Experimental determination of the concentration 

dependence of the differential thermoelectric power 

coefficient is more complicated than, for example, 

determining specific conductivity. The obtained 

reciprocity relations allow us to relate these coefficients to 

each other, which can also be used for the correct design 

of thermoelectric composites, optimization of their 

characteristics and increasing the efficiency of 

thermoelectric devices. 
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Співвідношення взаємності в термоелектричних композитах: 

оптимізація матеріалів для енергоефективності та управління тепловою 

енергією 

1Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»,  

м. Київ, Україна, im_ivan@ukr.net 
2Інститут реєстрації інформації Національної академії наук України, м. Київ, Україна 

Були розглянуті ефективні кінетичні властивості двофазних гетерогенних середовищ з різними 
термоелектричними властивостями. Ці властивості проявляють себе, коли електричний струм та тепловий 

потік співіснують у цьому середовищі. Показано, що в деяких випадках виявляється можливим узагальнити 

співвідношення взаємності, отримані за відсутності термолектричних явищ, і знайти інваріанти (комбінації 

ефективних термоелектричних коефіцієнтів) відносно зміни концентрації у двовимірному випадку. У 
тривимірному випадку, використовуючи підхід рухомого порогу протікання у теорії середнього поля, 

показано,що схожі співвідношення взаємності (інваріанти) можуть бути наближено задоволені, коли поріг 

протікання зсувається    
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