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Conclusions
Introduction

In condensed matter physics, the dielectric screening
plays an important role in the evaluation of self-consistent
potential due to the screening of the electron gas. Such
screening affects in elimination of the long-range
Coulomb field of the ion [1-20].

Bardeen [21] in the study of the electron-phonon
interaction first of all utilizes the self-consistent method of
screening by the electrons in the Hartree approximation.
The dielectric function is particularly useful in such
approximation where it leads to the potential that enters in
one electron Schrdodinger equation. If exchange and
correlation effect is included in the screening (i.e. Hartree-
Fock approximation) then it enters as a non-local (energy
dependent) potential and the problem becomes more
difficult.

While, the exchange and correlation interactions have
been investigated extensively for the free electron gas
using many body perturbation theories. As noted above
the Hartree approximation neglects any direct electron-
electron interactions [2, 3]. In particular, the neglection of
the requirement of the Pauli exclusion principle for
antisymmetric wave functions is corrected in the Hartree-
Fock approximation which gives an extra exchange term
in the energy. The correlation effects arise from the
Coulomb repulsion between electrons, leading to the
concept of a ‘correlation hole’ around each electron,
which excludes other electrons. As in the case of screening
there have been a number of calculation schemes proposed
[2, 3, 22-67] to introduce such exchange and correlation
effects of local field corrections into the potential via a
modified dielectric function [2, 3, 22-67].

Looking to the advantages of screening and their local
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field corrections in the literature, there are large number of
local field corrections functions are proposed by various
authors in the literature [2, 3, 22-67] and reported in the
present article. Also, their natures are plotted via f(q) —
q graph and their limiting values at ¢ = 0 and g — oo are
also reported in Table 1.

I. Dielectric Screening Theory

In general, no one has yet determined the precise
homogeneous gas dielectric function. Instead, a number of
researchers have found approximations to the answers.
Some of these have been discovered to be particularly
effective due to their clarity or correctness. They have
been given their inventors' names. These are their lists
[11]:

- Thomas-Fermi,

- Lindhard or Random Phase Approximation (RPA),

- Hubbard, and,

- Singwi-Sjolander.

A degenerate Fermi gas's dielectric function, £(q), is
typically expressed as

) =1+% (1)

Through g2 = 4me?N(E) is the screening length.
Here, N(E) is the density of state per energy E and
specified by
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Table 1.
Long wave length and Short wave length limits of LFCFs.
13:;' Name of Screening Functions Year E_I}(} f(@) 31_130 f(@
1 Hubbard (HB) 1957 0 0.5
2 Hubbard-Sham (HS) 1957 0 0.5
3 Hubbard-Sham-Geldart-Vosko (HSGV) 1957 0 0.5
4 Sham (SM) 1965 0 0.5
5 Kohn-Sham (KS) 1965 0 00
6 Geldart-Vosko (GV) 1966 0 0.5
7 Hartree (HT) 1967 - -
8 Harrison (HR) 1967 0 0.5
9 Kleinmann (KM) 1968 0 o)
10 Ashcroft (AS) 1968 0 0.5
11 Singwi-Tosi-Sjolander-Land (STSL) 1968 0 0.5
12 Kleinmann-Langreth (KL) 1968 0 o)
13 Shaw-Pynn (SP) 1969 0 0.5
14 Singwi-Sjolander-Tosi-Land (SSTL) 1970 0 A
15 Shaw (SH) 1970 0 0.5
16 Toigo-Woodruff (TW) 1970 0 0.762
17 King-Cutler (KC) 1971 0 0.5
18 Overhouser (OV) 1971 0 0.898
19 Mabhanti-Das (MD) 1971 0 o0
20 Vashishta-Singwi (VS) 1972 0 A
21 Jain-Jain (JJ) 1973 0 A
2 2
22 Pathak-Vashishta (PV) 1973 3¥ 3 [1-g(0)]
23 Kuglar (KR) 1975 % 2=0.3333
24 Srivastava (SR) 1977 0 0.316
25 Tripathi-Mandal (TM) 1977 0 0.33365
26 Taylor (TY) 1978 0 0
27 Ichimaru-Utsumi (TU) 1981 0 1—g(0)
28 Alvarellos and Flores (AF) 1984 0.375 13/30 = 0.4333
29 Bhatia-Singh (BS) 1985 0 0.5
2
30 Nagy (NG) 1986 % [9(0,n) — 3b] 1-g(0,n)
31 Farid-Heine-Engle-Robertson (FHER) 1993 0 0
32 Gold-Calmels (GC) 1993 0 1—-g(0)
2
33 Ortiz and Ballone (OB) 1994 Yo (ki) 1-g(0)
F
q\? q\?
34 Moroni, Ceperley-Senatore (MCS) 1995 A <k_> C (k_) +B
F F
2
35 Bretonnet-Boulahbak (BB) 1996 Yo (ki) 1-g(0)
F
36 Sarkar-Sen-Haldar-Roy (SSHR) 1998 0 A
37 Hellal, Gasser-Issolah (HGI) 2003 yn? 1-g(0)
38 Sarkar-Haldar-Roy- Sen (SHRS) 2004 1-g(0) —g(0)
Dornheim-Vorberger-Groth-Hoffmann- _
39 Moldabekov-Bonitz (DVGHMB) 2020 0 1-9©
K
fl@=(1-2)
40 Kukkonen-Chen (KC) 2021 Yo 00
F@=(1-2)
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It exhibits a dielectric screening function after being
substituted in Eq. (1),

)(EEF)_l o5+ |K&;

In this case, Z is the metal's valence, Ef is the Fermi
energy, and kj is the Fermi momentum. On the basis of
the self-consistent treatment of screening, Bardeen [21]
constructed this equation, which is a static Hartree
dielectric constant. Lindhard [19] has also produced a
formula for the dielectric function generated by the
random phase approximation (RPA) as,

8nZ 4kE:-q? I

8qkp

|q+2kp

(@) =1+ ( pary

SRPA(Q)—1+qS—1+( )T(Q) 4

with Ag = FT and F(q) = [0 5 +4'kF q* In |q+2kF

q-2kfp

|

It is noticeable that how equations (3) and (4) are
identical. The high electron density zone is the only one
where the Lindhard function [16] is valid. Additionally,
this idea does not take into account the short-term impacts.
Due to its foundation being a sharp fermi surface, the
electrons have an unlimited mean-free path. Leavens et al.

[68] have developed a rough generalisation of such a
function that takes the finite mean free path impact into
account. At slightly higher temperatures, it might be more
crucial for liquid metals [11].

Hubbard [23, 24] suggested a self-consistent approach
to enhance the RPA value of the energy in their seminal
articles, employing a complex diagrammatic technique. In
this approach, he has included the exchange hole's
contribution to the Hartree-Fock approximation. The
modified Hartree dielectric function £*(q) [2, 3] is thus
given by

e'(q) =1+ {ex(@) — 1H1 - f(@)}. )

The LFCF, often known as the exchange and
correlation function, is f(q). Additionally, the Hartree [2,
3] dielectric function is &y(g). Such a function's
mathematical notation is represented as [2,3].

3me?z
QoY 2kE

eu(@) =1+ [1+ 25 0 [22]; with v = -L(6)
F

Levine and Louie [69] postulated that the spatial

dielectric function for semiconducting materials is of the

type,

~ 2 (tan—12%* —1- LY\ (BrE
en(q) =1 tiz [0 5 (tan +tan 7 ) + (16Y2 Tw 16) n (/12+y2)]' ™
with, the electron to rearrange in response to the displacement
of ions caused by lattice vibrations. In light of this, the
s =Y(2+Y), dielectric function is provided by
y-=Y(2+Y), £(p) = 1 - &5(p) — £as(p). ®

L= ’L and A =2
4k’ 3L2k1%~(£0—1)-

Where, &, signifies the finite dielectric constant of the
semiconductor.

The model band topologies make it clear that all of the
d-sub bands are occupied and that the Fermi level only

Where, &.(p) and &4,(p) are _8”/p2 times the

polarizability functions rise from the intraband and
interband transitions, respectively. And p = g + G where
q is the phonon wavevector and G the reciprocal-lattice
vector, respectively. The mathematical notations for
&5s(p) and £44(p) are narrated by [70]

crosses the s-band, according to Singh apq Prakash [70]. £.(p) = — 2mgkpse? [1 n 4k} —p> |2kps+p|] )
Therefore, the two forms of transition from the 8 Th2p? 4kpsp 2kps—pll
unoccupied s-band to the vacant s-band and from the
occupied d-sub bands to empty s-bands, are what induce and
32mee? & ngDg—mIO
eas(P) = 7 Xm (D™ | PO dkk? [F, (k)12 +(D%,D2;_p + D D2 )1 (10)
+(D3, D%, + D2, D5 ),
2 1/3
Where, Ky = (37,920{1”1)
_ M2k
S 2Ep’ Where, Er is the Fermi energy, Z; the number of s-
\ 13 electr0n§ per atom, (), th.e atomic Yolume and e the
Kps = (377 Zs) , electronic charge, res'pectlvely. .Whlle 'D,an are the
Qo elements of rotation matrix with argument
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(—=y',—B',—a') where a', B', and y' are the Euler's

angles, k is electron wave vector. Ry(r) =Y;aq;r2e~4",
I, = 3 (0.51,,0 — 31,,, + 4.51,,,), where, a; apd a; are the two parameters. Such values are
4 substituted in the equation above to get,
15
L=—=—0L,+1L,), i
1 4 ( n2 n4) Fz(k) = 48k2 Zi (k2a+‘;i2)4.

15
ILL=—(0.5L,—1 . . S .
278 (0.5Ino = Inz + 0.51na), There is no doubt that the compressibility sum rule is

satisfied by the dielectric function £(q) defined by Geldert
and Vosko [26], but the pair correlation function obtained
from it has a —oo, producing physically incorrect results.

here,

Iy = — % In Z%Z ) Although the pair correlation function is driven to infinity

over the whole range of metallic densities, the dielectric

=1 [2_a a? e ] function of Kleinman [28, 29] poses a major problem. The

n2 blb b2 |p+all theory presented by Singwi and colleagues [34, 71]

s complies with both constraints. The dynamical structure

Iy = _% i_i Zb% 2_4 n |Z%Z ]’ factor S(q) was specifically derived by their method from

the correlation function, and the expression for the
dielectric constant is given by relating S(q) to the (q)
derived from the local field corrections for Coulomb and
exchange contributions,

a= kz(ms/mdm -1)- PZ,

b = 2kp.
e(q) =1+ [Qo(q)/{1 - f(@)Qo(d)}], (12)

The radial component of the d-wave function is
involved in the function F,(k), which is defined as

Here
Fy(k) = [)° j,(kr)Ry(r)r?dr, (11) @ e [ kB |q+2ke]
Qo(q) = F = nagq? [E 8qkFr |q—2kp|]'
where j,(kr) is the spherical Bessel function and the
radial part of the d —wave function. The algebraically challenging expression for f(q) is
9q2 2 k2 q\? 2k 8 \ (kp\2 4 1\ [ q\? 2kp+
r@ = () |G 2 () + 40+ () - CONGR) () 5o+ G () Jm Bz +
7\2 1 a\% 2 q2—4k2

() 1Go) () - m|=52]) (13)

In order to get a self-consistent form, the cycle of Toigo and Woodruff's [37] tabulation of the values for
equations describing the relationship between S(q), £(q), Green's function G(gq,0) is shown here. Geldert and
and the pair correlation function g(r) is iteratively solved Taylor [64] used perturbation theory to create a screening
on a computer. constant, confirming the discussion of it offered in [37].

Similar to this, Toigo and Woodruff [37] used the Additionally, Vashishta and Singwi [43] have more
double-time Green function technique and a momentum- precisely expanded the theory of collective motion's [7]
saving decoupling scheme to derive a mathematical applicability to electron screening.
formula for the dielectric function of the electron liquid. A Unfortunately, the literature does not pay much
similar plan would include applying the f-sum rule to the attention to a thorough study of LFCFs. Because they
dielectric function. Consequently, it is expressed as necessitate a thorough handling of electronic many-body
follows: effects, an incredibly complex subject, a vast number of

distinct approximations exist as a result. The local density
e(q,w) =1+ [Qy(q,w)/1—-G(q, w)Qy(q, w)]. (14) functional (LDF) form proposed by Hedin and Lundquist
[72] and Taylor [49] is the most straightforward and

The Lindhard function in the RPA approximation practical method for considering f(q).

(polarizability of the free electron gas) is Qy(q, w) [16]. The compressibility sum rule is a useful tool for
Po(q, w) comprises the exchange and correlation effects navigating the extensive local field literature. There are
left out of the function Qy(q,w), whereas further sum rules connecting the static dielectric function
(qw) = Po@®) [ tho case of an electron li quid, to the correlation energy, the electron-electron pair

Q(q.w) correlation function, etc., but the compressibility sum rule
w = 0 transforms the equation above into is by far the most significant, as the LDF theory's

enormous success illustrates. Therefore, it has been
€(q,0) =1+ [Qo(q,0)/1—G(q,0)Q0(q,0)].  (15) demonstrated by studying the suggested local fields in the
context of sum rules that all f(q) expressions published
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prior to 1970 are replaced by more recent work. The
remaining methods, such as those proposed by Toigo and
Woodruff [37], Vashishta and Singwi [43], [chimaru and
Utsumi [50], and Geldert and Taylor [73], merit further
study.

II. Several Forms of LFCFs

Total 40 LFCFs that are listed in the literature are
briefly discussed in this section, along with their accurate
mathematical notations.

2.1. Hubbard (HB) LFCF (1957)

According to the Hubbard LFCF [23, 24], the
exchange contact between parallel spin electrons
essentially cancels out half of the direct, or Coulomb,
interaction at very small wavelengths. It is noted as
follows:

0.5q2
(q%+kZ)

fl@) =

(16)

2.2. Hubbard-Sham (HS) LFCF (1957)

The introduction of exchange between electrons with
parallel ‘spins’ results in the Hubbard-Sham [23-25]
LFCF. Hubbard-Sham effects are insufficient for low g
values. The exchange and correlation function has the
following form:

O.Sq2
(g%+¢kE)’

fl@) = (17)
0.916

Here, parameter § = ———
P S [0.458+0.01r5]

and rg is the Wigner-

Seitz radius.

2.3. Hubbard-Sham-Geldart-Vosko
(HSGV) (1957)

The parameter ¢ in the Hubbard-Sham-Geldart-Vosko
[23-26] LFCF is selected in a way that satisfies the
compressibility sum rule. This LFCF violates the
requirement that the electron pair correlation function
g(r) must be positive for all r for tiny r in the range of
typically occurring rg values. It is provided by,

LFCF

0.5¢2

@) =25 (18)
2
here, parameter £ = ————.
P
2.4. Sham (SM) LFCF (1965)

Sham [25] changed the Hartree approximation by
altering the Coulomb interaction between two electrons
using the provided LFCF f(q), which incorporates the
Thomas-Fermi local field correction length K.

0.5¢2 4kp

— : 2 _ 4kr
flg) = (i) with Kfp = o~ (19)
2.5. Kohn-Sham (KS) LFCF (1965)
Approximation  techniques for treating an
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inhomogeneous system of interacting electrons are created
based on the theory of Hohenberg and Kohn [27]. For
systems with slowly fluctuating or high densities, these
approaches are precise. They result in self-consistent
equations that are equivalent to the Hartree and Hartree-
Fock equations for the ground state, respectively. These
equations provide additional effective potentials for the
exchange and correlation parts of the chemical potential of
a uniform electron gas. The same approach is used to treat
electronic systems operating in magnetic fields and at
limited temperatures. The function's expression is written
as

D 5y2
f@=1-5(1-%), (20)
where
D _ [1 4+ TS (1.47 + 0.06257 — Inr )]_1
Do 12.07 ' S S
withY = %
F
2.6. Geldart-Vosko LFCF (GV) (1966)

The many-body perturbation theory is used to
examine the Geldart-Vosko [26] LFCF of an interacting
electron gas at high metallic densities. The study is based
on a fundamental relationship between the system's
compressibility and the local field correction constant,
also known as the zero-frequency small wave-vector
LFCF. A connected set of integral equations for the
propagator, the self-energy, the vertex function, and the
LFCF is used to explore the basic problem of selecting a
self-consistent set of graphs for computing the LFCF. On
the basis of these findings, a modification of Hubbard's
[23, 24] form of the LFCF is proposed. It's indicated by

0.5q2
q*+EkE’

fl@) = e2y)

2

K2
1+0.153( —LF
4kZ

4kp

where, parameter § = and K2 = —
0

2.7. Hartree (HT) LFCF (1967)

It is a popular LFCF that is employed by the majority
of researchers in all areas pertaining to metals. The Hartree
[2, 3] dielectric function e4(q), discovered for the first
time by Lindhard [19], is derived from the first-order
perturbation and corresponds to those solid-state physics
approximations, namely the Hartree model, which ignore
interaction and electron correlation; for example, one can
write

f(@)=0. (22)

According to equation (17), as g —» 0 at long

P ame?kp
wavelength limit £(q) - .

or €(q) - o, and at
16me?K}
3mwh2q?
€(q) » 1. There is a tiny logarithmic singularity at
q = 2kg. Additionally, this singularity may have a notable

impact on qualities that depend on the dielectric function's

short wavelength limiti.e. g » o, &(q) » 1+
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Fourier transform.

2.8. Harrison (HR) LFCF (1967)

At long wavelengths, Harrison [2, 3] has discovered
that the form factors are unaffected by the LFCF and
continue to be the same as in the Hartree computations. In
this limit, the exchange potential is not insignificant, but
the direct potential has adjusted itself so that the sum of
the two is nearly equal to the Hartree potential. The LFCFs
do not significantly change form factors or electrical
characteristics at short wavelengths. It is provided by

0.5¢2
flq) = @D

2.9. Kleinmann (KM) LFCF (1968)

Kleinmann [28, 29] obtains the dynamic dielectric
constants suited to electrons and to the test charge using
self-consistent field approaches. This alters with the
inclusion of the screened Hartree-Fock exchange. The
formula for it is

(23)

q2
e

fl)=+ ( 24

2+€k2

2
0.153

[1+<Tl=:lok1=>].

The Coulomb contributions are less than the exchange
contributions for high wave vectors (in the static limit),
and the electronic dielectric constant decreases to less than

where, parameter § =

2
105

(e

2

fl@ ==

2

+x2 (X - L)in

210

where, X = 4
kg

2.12. Kleinmann-Langreth (KL) LFCF (1968)

It is demonstrated that the approximation created by
Kleinmann [28, 29] and Langreth [32] is erroneous overall
but performs admirably in a huge static q-limit. An
approximate integral equation for the local field
corrections of the electron gas is solved using the
variational principle. It is demonstrated that the equation
for the dielectric constant can be solved using the simplest
trial functions and that this solution is accurate in both the
limits of small and large momentum transfer. The
variational calculation's dielectric constant is used to
construct an equation for the ground-state energy and is
written as

F@=2 s + | @7)
=y (q%+kE+k%)  (kK2+k3)]|
where, k§=%.

0

2.13. Shaw-Pynn (SP) LFCF (SP) (1969)

The LFCF mentioned above was developed by Shaw
and Pynn [33] and is more appropriate than Hubbard's
form [19]. The notation reads as follows:

506

15

one. Additionally, he develops screened exchange
potentials that are linearly dependent on the charge density
p(r), which appears to be more accurate for energy-band
computations than the Slater n'/3(r) approximation.

2.10. Ashcroft (AS) LFCF (1968)

The non-local screening by the electron gas and spin-
orbit coupling have both been added to Ashcroft's [30]
theory of the model pseudopotential, with the latter
consequence being far more significant. The variations in
the matrix elements that arise in most metals are
negligible, but simulations show that the effect of spin-
orbit coupling is to enhance resistivity, which is further
amplified by non-local field correction. Its mathematical
formulation is provided by

f@ =22+ Bas) ™ (25)

with, parameter B = 2(1 +0.01520)71, A= v

2.11. Singwi-Tosi-Sjolander-Land (STSL) LFCF
(1968)

Singwi et al.'s improved version of the dielectric
function [31] explicitly and roughly includes the short-
range correlations resulting from both the Coulomb and
exchange effects. Consequently, the following method can
be used to determine dielectric function in a self-
consistent manner:

8 X+2
IR »

@ =3[t exp ()| + L exp (-55). @®)

Where =0 for the Kohn-Sham approximation, y=0,
but the optimal values are f =2, y =0.0123,
a = 0.0538. Here, the first term depicts the energy of
exchange, and the second term, the energy of correlation.

2.14. Singwi-Sjolander-Tosi-Land (SSTL) LFCF
(1970)

The local field correction of the coulomb potential
entering the local field is the consequence of the pair
correlation function being adjusted to the external field,
according to Singwi and colleagues [34]. The density
correlation function and the dielectric function in the
metallic density range have been evaluated using self-
consistent numerical methods, and they are provided as

2
f@=[1-exp(-BE)] 29)
where, A =1.0630—0.153k; and B = —0.2736 +
0.61kY°.

2.15. Shaw (SH) LFCF (1970)

Shaw [35, 36] has given two standards for
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determining if a LFCF f(q) is appropriate: (1) the degree
to which f(q) (the pair correlation function) is physically
valid and (2) self-consistent.

Shaw [35, 36] has proposed the above LFCF f(q)
based on the aforementioned criteria.

It is represented mathematically as follows:

1 qz
f=2[1-en (- 5| (30)
2
here, parameter £ = Troozsars

Second expression was also proposed by Shaw
[35, 36]

(@) =1 —exp(—0.535Y%) withY = ,j—F (31)

2.16. Toigo-Woodruff (TW) LFCF (1970)

A novel method for computing the frequency and
wave-vector-dependent dielectric response function has
been described by Toigo-Woodruff [37]. The dielectric
function is based on decoupling and using a moment-
conserving technique to solve the equations of motion for
the charge-density operators' Green's function. This
technique yields an expression for the dielectric function
in the static limit (w — 0), which depends on f(q), for
which numerical values are derived and tabulated for
small, moderate, and high values of q. This expression is
shown in Table 2 below.

2.17. King-Cutler (KC) LFCF (KC) (1971)

By extrapolating between the short and long
wavelength constraints, King and Cutler [38—40] have
developed the LFCF f(q). They discovered that the
correlation was negligible in comparison to the exchange
interaction and hence disregarded the correlation's impact.
It is spelled as

0.5q2
f@=rp (32)

2.18. Overhouser (OV) LFCF (1971)

The condensed theory of electron correlation in
metals was presented by Overhouser [41]. Here, a model
that enables computing the correlation effect of interacting
electrons is devised. The plasma frequency w(q) is
determined by requiring the model to have a valid
electron-gas dielectric function, as stated above, and the
interaction coefficient is determined by satisfying the f-
sum rule. Additionally, the g-dependence of the exchange

and correlation contributions to the one-electron energy
E(q) is almost the reverse. It is expressed in textual form
as

0.275%2

f(@)= (33)

1s
(1+2.5X2+0.09375X4)2

where, X = £
kp

2.19. Mahanti-Das (MD) LFCF (1971)

By screening the bare Coulomb potential with the
Thomas-Fermi model of the dielectric function and
applying a specific local approximation, Mahanti and Das
[42] created the LFCF f(q). Although the Thomas-Fermi
model left the local field correction parameter & as an open
parameter to be calculated from experimental values, it
provided the value of the parameter as a function of g
(electron sphere radius). The importance of the exchange
core polarisation effect and the exchange-enhancement
impact of the susceptibility caused by electron-electron
contact are clearly characterised using the Mahanti-Das
dielectric function [42]. It is demonstrated that one can
reach an overall agreement with experiment by taking into
account these effects in addition to the relativistic
corrections to the spin density for heavier alkali metals. Its
expression is described as

f@=3 {k% &) +q2+k%q(§zﬂ)}, (34)

2
where, &= 140.02615"

2.20. Vashishta-Singwi (VS) LFCF (1972)

At metallic concentrations, electron correlations have
been changed by Vashishta and Singwi [43]. The
modification entails incorporating the pair correlation
function into an external weak field via the equilibrium
pair correlation function's density derivative. The local-
field correction fulfilling the compressibility sum rule is
given a new expression as a result, which is stated as

f(@d =A [1 — exp (—B g)] (35

2
Where, A = 0.4666 + 0.3735k . and

1
B = —0.0085 + 0.3318k;.

Table 2.

Numerical Values of Toigo-Woodruff LFCF.

q (@) q f(q) q f(q) q f(q) q f(q)
0.1 | 0.00251 | 1.1 | 0.25231 | 2.1 | 0.74824 | 3.1 | 0.72873 5 0.74886
0.2 | 0.01001 | 1.2 | 03046 | 2.2 | 0.73439 | 3.2 | 0.73037 6 0.753
03 | 0.02257 | 1.3 | 042162 | 2.3 | 0.72756 | 3.3 | 0.73199 7 0.75547
0.4 | 0.04021 | 1.4 | 048534 | 2.4 | 0.72416 | 3.4 | 0.73355 8 0.75705
0.5 | 0.06296 | 1.5 | 0.55147 | 2.5 | 0.72275 | 3.5 | 0.73503 | 2x10° | 0.76213
0.6 | 0.09081 | 1.6 | 0.61871 | 2.6 | 0.72309 | 3.6 | 0.73644
0.7 | 0.12374 | 1.7 | 0.68493 | 2.7 | 0.72309 | 3.7 | 0.73776
0.8 | 0.16171 | 1.8 | 0.74631 | 2.8 | 0.72418 | 3.8 | 0.739
0.9 | 020461 | 1.9 | 0.79435 | 2.9 | 0.72558 | 3.9 | 0.74016
1.0 | 025231 | 2.0 | 0.78999 | 3.0 | 0.7271 | 4.0 | 0.74124
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2.21. Jain-Jain (JJ) LFCF (1973)

On the basis of the ideas of Singwi et al. [31] and
utilising new details on g(0) from the partial-wave phase-
shift analysis, Jain and Jain [44] present a
phenomenological definition for the local field correction
term f(q). Such a shape almost exactly satisfies the
compressibility sum rule, and the current plan results in
positivity of g(r) at r = 0 for every rg from 1 to 6. Such
a function's mathematical expression is as follows:

f(q) = A[1 — exp(—Bq*) — q* exp(—=Cq?) + 6(q)].  (36)

Where, the constants are
8(q) = 0.75q%exp(—10g3),

A=093950r4d =1-g(0),

fl@ ==2f7 daq*s@) - D -

2.23. Kuglar (KR) LFCF (1975)

B = 0.6068.
C = 4.5541.
Here, g(0) = and lies in the range of

(8+3 $)2

0<g(0) <0.5.

2.22. Pathak-Vashishta (PV) LFCF (1973)

An equation for the local-field correction has been
provided by Pathak and Vashishta [45]. It is derived by
using the third frequency moment of the spectrum
function of the electron-density response function with the
self-consistent method of Singwi et al. [34]. This local
field is connected to the imaginary portion of the dielectric
function by the fluctuation-dissipation theorem and is a
functional of the structure factor S(g). Its mathematical
equivalent is

kF+(kF q)
4qu3

krtq
n E” (37)

The wave-vector and frequency-dependent dielectric function of an electron gas, €(k, w), has been proposed by
Kuglar [46] and is described in terms of Lindhard's function. Additionally, he has developed a sophisticated local field
correction, denoted by the notation G (k, w), that encompasses all of the impacts of dynamic exchange and correlation in

the system.

—_3[32 _608 142y, 2
flo) = 16{63Y2 943 315 315

2.24. Srivastava (SR) LFCF (1977)

Srivastava [47] presented the exponential form of the
LFCF, which takes into account the effects of exchange
and correlation on conduction electrons, which are taken
into account independently by employing distinct
dielectric local field corrections in various characteristics.

@ =%[1‘e"p el

, A% = (magkp) L.

(39)

Where, € =

5+512

2.25. Tripathi-Mandal (TM) LFCF (1977)

By using effective mean field theory to solve the
equation of motion for the double-time retarded
commutator of the classical density fluctuation operators,
Tripathi and Mandal [48] were able to get the density
response function. Additionally, it is discovered that the
local field correction's notation is similar to that obtained
by Pathak and Vashishta [43]. For small, intermediate, and
large values of g, the numerical values of the LFCF are
calculated and tabulated and are displayed in Table 3.

£(q) = AX* + BX? + C + {[AX4 + (B + gA)

where, X = ki. While A4,B and Care the ry dependent
F
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ot (- )t ) winy = s

63Y%2 35

2.26. Taylor (TY) LFCF (1978)

Taylor's [49] LFCF complies with the compressibility
sum rule. A straightforward and practical analytic form of
the static electron gas dielectric function is constructed
using this LFCF, f(q). A straightforward formula for the
static electron gas dielectric function that takes exchange
and correlation effects into account produces estimated
physical parameters with remarkably high levels of
accuracy and has excellent formal support. The notation
reads as follows:

0.1534
rie')

f@ _ )

41 (40)

2.27. Ichimaru-Utsumi (IU) LFCF (1981)

A formula that fits the compressibility sum rule and
the short-range correlation microscopic computations has
been put out by Ichimaru and Utsumi [50] for the dielectric
LFCF of the degenerate electron liquid. The equation of
continuity, long-time relaxation behaviour, static and
dynamic local-field correlations, and frequency-moment
sum rules are some of the physical criteria that are satisfied
by the longitudinal dielectric response function for a
strongly coupled plasma. It is symbolised by

C] (4— X2)1 |2+X|} (41)

2-X

parameters given by the expressions
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Table 4.

Numerical Values of Alvarellos-Flores LFCF.

q f(@) q f(@) q

f(@) q f(@) q f(@)

0.1 | 0.00376 | 1.1 | 0.44053 | 1.9 | 0.82237 | 2.6 | 0.53185 | 20.0 | 0.43451

0.2 | 0.01510 | 1.2 | 0.51311 | 1.95 | 0.79455 | 2.7 | 0.52170 | 30.0 | 0.43386

0.3 | 0.03411 | 1.3 | 0.58591 | 2.0 | 0.73579 | 2.8 | 0.51322 | 40.0 | 0.43363

0.4 | 0.06084 | 1.4 | 0.65647 | 2.05 | 0.67897 | 2.9 | 0.50602 | 50.0 | 0.43352

0.5 | 0.09524 | 1.5 | 0.72166 | 2.1 | 0.64777 | 3.0 | 0.49984

0.6 | 0.13713 | 1.6 | 0.77749 | 2.15 | 0.62494 | 4.0 | 0.46662

0.7 | 0.18617 | 1.7 | 0.81862 | 2.2 | 0.60693 | 5.0 | 0.45365

0.8 | 0.24187 | 1.75 | 0.83148 | 2.3 | 0.57970 | 6.0 | 0.44710

0.9 | 030351 | 1.8 | 0.83760 | 2.4 | 0.55970 | 8.0 | 0.44331

1.0 | 0.37014 | 1.85 | 0.83536 | 2.5 | 0.54423 | 10.0 | 0.43813

A=0.029 (0 <7 <15),

)
T 4 1/3 d
Yo =025 - (_) (_) Tss dars (rs_z dr {Ec (rs)})

90 =5(:5)

Here, the correlation energy is indicated by E¢(rs),
and I, (Z) is the first order modified Bessel's function.

rsdirs{Ec(rs)} = b, (%) P X = \/75

1+b1x+byx2+b3x

With b, = 0.0621814, b, = 9.81379, b, = 2.8224
and b; = 0.736411.

2.28. Alvarellos-Flores (AF) LFCF (1984)

an electron liquid, which falls short of several other
approaches described in the literature. They acquire static
f(g) and contrast their pair correlation function and
correlation energy results with those obtained using
alternative techniques. They noticed that their method
gives reasonable agreement with more complex methods
for metallic densities and is suitable for high densities. The
key benefit of the suggested static local field correction,

£(q), is that it turns out to be a universal function of 7 / Ky

(kg is the Fermi wavelength), which is an easy expression
to employ in calculating metallic characteristics. Table 4
tabulates the numerical values of the function f(q).

2.29. Bhatia-Singh (BS) LFCF (1985)

The exchange and correlation function proposed by
Sham [25] has been updated by Bhatia and Singh [52] by
including the second half of the Thomas-Fermi screening
length term in the calculation f(q). The exchange and
correlation potentials must be equivalent to those for a
uniform electron gas at that density at very low
wavelengths. It is spelled as

By using a new approach, Alvarellos and Flores [51] f(q) = 0.5¢2 ) (42)

have presented a local field effect in both the static and (2+kf+3KE)

dynamic limits. In essence, it is an expansion of Slater's

treatment method for exchange and correlation effects in Where, KTF = ﬁ

ag
Table 3.
Numerical Values of Tripathi-Mandal LFCF

q f(@) q f(@) q f(q) q f(q) q fl@)
0.1 0.00248 1.6 0.99096 | 2.09 | 0.88639 3.5 0.40636 14.0 0.33704
0.2 0.00995 1.7 1.20813 2.1 0.8625 3.6 0.40126 15.0 0.33657
0.3 0.02255 1.8 1.47685 2.2 0.70973 3.7 0.39672 16.0 0.33619
0.4 0.04048 1.9 1.79698 2.3 0.62802 3.8 0.39265 16.0 0.33587
0.5 0.06407 1.95 1.94114 24 0.57537 3.9 0.38898 17.0 0.33661
0.6 0.09372 1.99 1.96407 2.5 0.53814 4.0 0.38566 18.0 0.33539
0.7 0.13003 2.0 1.8992 2.6 0.51025 5.0 0.36454 19.0 0.3352
0.8 0.17371 2.01 1.75113 2.7 0.48852 6.0 0.35427 20.0 0.33456
0.9 0.22572 2.02 1.32512 2.8 0.47109 7.0 0.34842 25.0 0.33422
1.0 0.28727 2.03 1.20682 2.9 0.45681 8.0 0.34476 30.0 0.33379
1.1 0.35994 2.04 | 1.12736 3 0.44489 9.0 0.3423 45.0 0.33371
1.2 0.44576 2.05 1.06708 3.1 0.43479 10.0 | 0.34058 50.0 0.33365
1.3 0.54745 2.06 1.01855 3.2 0.42614 11.0 | 0.33931 90.0 0.33704
1.4 0.66862 2.07 | 0.97803 3.3 0.41866 12.0 | 0.33836
1.5 0.8142 2.08 | 0.94335 34 0.41212 13.0 | 0.33762
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2.30. Nagy (NG) LFCF (1986)
Most current Nagy’s static LFCF [53] is specified by,

@ tan™! (g)

Here, g(r,n) is the density dependent pair-correlation
function supposed to having analytical form

fl@=1-g0n)+=" (43)

+ 2

g(r,n) =1+ (a+ br)exp(—cr).

From the analysis of the s-wave Schrodinger equation
in the r — 0, limit it is identified that

;—T [lng(r,n)]=o = 1.

It gives a precise formulation for g(r,n) withr = 0.

1+2exp(—0.67s)
1+exp(—0.6r5)+2rsl’

1
g(0,n) = 2[

with,
a=g0mn)—1

b=g0,n)(1+c)—c,

_ 0.5
c=( [1+ (Grs-1) ]

0.5Y/3 0.5/

R={Er @ -7} - [-017
a=-Hl1-g0On)],
rs
B = % g(0,n).
2.31. Farid-Heine-Engle-Robertson (FHER)

LFCF (1993)

An improved and extremely precise formulation for
f(g,w — 0) is given by Farid et al. in [54]. According to
the precise frequency moments of the density-density
correlation function, this expression satisfies the exact
asymptotic results for the short- and long-wavelength
limitations. Although this f(g, 0) and the f(q) of the TU-
function [50] share some similarities, they are
fundamentally different. Farid et al. [54] also present a
model for this function, along with some very accurate
interpolation expressions for a number of the coefficients
both in this and f(q, 0). This is because f(q,0) involves
momentum moments of the momentum distribution
function of the interacting electron gas. Consequently, it
is symbolised by

f(@) = (AX*+BX2+C) + {[(AX“ +Dx2— ) XZ)] |2+x

L (44)

where, X = ki. While 4, B,C and D are the rg dependent
F

parameters specified by the following expressions

63

A= (5) a0~ (s000) (08 — 2008 + b§)} — 16D,

64

510

b= (2ot ()b (20~ ()
=0+ (- (Do (9
o= (o2~ (.
ra=025-(5)(2) 1 £ (5 )

bo—b0+b0+b0,
b4 =2[1 - g(0)],

48E2
b =—L§
0 7 3503 %
2
¢ _ _ 16E 1y 2
bg 25(‘)12)[ 8, + 631,
4E2
b_2 = _F62
5w3 <’
Br__ 1
w3 122%rg
A\1/3
loa= (9—) =0.52106,
T

ap = 0.029 (0 < 75 < 15),
_ X
£, = —2.2963827 x 102,
&, = 5.6991691 x 1072,
£, = —0.8533622,
£, = —8.7736539,
& = 0.7881997,
£ = —1.2707788 x 102,
po = —79.9684540,
p1 = —140.5268938,

with x = rsl/z,

0, = —35.2575566,
s = —10.6331769,
84 _ 2?=0 ¢jxj
6, xS5+%5 05’

@, = 23.0118890,
@, = —64.8378723,
@, = 63.5105927,
@3 = —13.9457829,
0, = —12.6252782,
@s = 13.8524989,
@6 = —5.2740937,
@, = 1.0156885,
= —1.1039532 x 1072,
00 = 9.5753544,
0, = —32.9770151,
0, = 48.2528870,
0; = —38.7189788,
04 = 20.5595956,
05 = —6.3066750,

(]

g(0 )__(1 (z))2

Here, 1,(Z) is the Bessel’s function of first kind and
first order.

3.32. Gold-Calmels (GC) LFCF (1993)

With the aid of the sum-rule variant of Singwi et al.'s
[34] self-consistent technique, Gold and Calmels [55]
suggested the local field correction for the two-
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dimensional and three-dimensional electron gas. They 0.8 <rs <10, which is the most relevant for density
reported their findings within the 0.001 < 1y, < 100 functional computations, has been fitted using the
tolerance. They compute the LFCF using an analytical analytical form developed by the authors, which is closely
expression for the static structure factor that represents a linked to Ichimaru and Utsumi [50]. They use variational
generalised Feynman-Bijl spectrum. Such a function's Monte Carlo (VMC) and fixed-node diffusion Monte
mathematical expression is provided by Carlo methods to analyse the three-dimensional uniform
electron gas in the Fermi liquid domain. Here, the VMC
% 0.846Y2 approach is used to analyse the spin dependency energy.
fla)=r (2.1886‘13(r5)+Y26‘23(rS))' (45) In a rhombic dodecahedron cell (fcc Wigner-Seitz cell)
with periodic boundary conditions (PBCs), they have

1 3

considered N = N, + N; electrons. The number of spin-up
(-down) electrons in the cell is Ny(y. Despite the modest
drawback of having to impose the PBCs during the
simulation, this cell's almost spherical shape is preferable
because it more closely resembles the isotropic
environment of the fluid phase than the ordinary cubic
cell. By using sum rules and approximative relations, the
authors have fitted g(r) to a straightforward analytical
expression that looks like this:

Where, Cy3(15) = 1.0956r and C,3(r5) = 1.6911r.

In his extended papers, Gold [56, 57] has modified
and discussed this function for two-dimensional and three-
dimensional electron gases.

2.33.0rtiz-Ballone (OB) LFCF (1994)

Density functional theory has been proposed by the
authors [58] as a means of describing exchange and
correlation in inhomogeneous systems. The density range

fuv (kiF) =1+ exp (—nw (:—F)z) (46)

Where the spin is indicated by the symbols y and v. field factor f(q) smoothly interpolates between the
The coefficients A, B,C, D, E, F and 7, on the other hand, asymptotic small and big q behaviour. The local density

rely on rg and the corresponding values of the pu and v approximation to density functional theory for q < 2kp
spins. These parameters are calculated using the accurately reproduces its almost asymptotic behaviour.
relationships listed below. Such a function's basic formula is
Ay =1, 2\ /" 2
Ap_ = —0.00057¢ + 0.02017% — 0.24172r5 — 0.1039,  f(q) = <[(A -0+ (B"?> ] + C) (kiF) . (48)
F

By, =0,
B,_ = 0.01173 — 0.187972 + 0.7794r5 + 0.0714,

C,, = —0.001973 + 0.039672 — 0.2872r5 + 1.3061, Withn = 8forrg =2andrs =5andn = 4 forrs =

10. The constants used in current formulation is calculated

C,_ = —0.0162r¢ + 0.2564r% — 0.8082r5 — 0.0419, .
D,, = 0.0036r¢ — 0.0738r + 0.4972r5 — 1.3074, y
D,_ = 0.0102r3 + 013151 — 0.44867 + 0.6049, (e, )
E,y = —0.00197¢ 4 0.0382r¢ — 0.2438r5 + 0.5104, A(rg) = 24—l — _ 0033773726 with y is
E,_ = —0.018r3 + 0.0278r% — 0.0683r; — 0.0171, * (‘““’2/,(%)
F,, = 0.00037 — 0.00627¢ + 0.0373r5 — 0.0698, the correlation contribution to the chemical potential of
F,_ =0.0001rs — 0.0021r¢ + 0.004775 + 0.0018, the uniform electron gas. It is consuming value near by
Nes = —0.00097¢ + 0.0215r% — 0.155275 + 0.5155, e
Ns_ = —0.00597¢ + 0.089672 — 0.3175 + 0.3491. 3n?

The best-fit parameters for the VMC radial B(r) = (1+asx+azx?) (49)

. . . . 3)°
distribution functions are used to fit these parameters. The (3+b1x+bax™)

spin-polarised systems are denoted by the ‘++’ sign, while

the spin-unpolarized systems are denoted by the ‘-+ sign. Here, x=.[r; and a; =215 a,=0435

The following method is used to determine the f(q). b; = 1.57 and b, = 0.409.
Clre) = = [%j:” = 0.071033081 with & the
1 F
fl@= 2 [fir (@ + fi (] (47) correlation energy per particle.
2.34. Moroni-Ceperley-Senatore (MCS) LFCF 2.35. Bretonnet-Boulahbak (BB) LFCF (1996)
(1995) Bretonnet and Boulahbak [60] have proposed a semi-
The density-density static response of the electron gas analytical form of the LFCF f(q) for the uniform electron
at absolute zero and in the metallic domain has been gas in the density range 0 < rg < 10, which faithfully
assessed by the authors [59] using a diffusion Monte Carlo reproduces the most recent diffusion Monte Carlo results
method. With a crossover about 2kg, the computed local of Ortiz and Ballone [58]. This is in accordance with the
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scheme of Singwi et al. [34]. The formula for f(q) is as
follows:

_ - w3
f@=1-g(0) e 55 ,C,1F (1-4,3;2). (50)
Where,

_1fom 2/3712
- Z(T) o’
y = —0.103756,
By = 0.56371,
B, = 0.27358,
A, = 0.031091,
B, = —0.046644,
C, = —0.00419,
D, = —0.00983,
Co = 2w/rt/a
C, = c— aA
1= a
CZ — 3D-2aB W’
C _ 2E-aC
3= az
Cy = §(5F —2aD)\/m/a>,
2
Cs =2,
Ce = 18—5F m/a®,

1 a3 o a

Yo=73~ (%) (E) 5 drg (rs drg {Ec(rs)})

g(0) ==~ (,;?)2
()

Here, 1,(Z) is the first order modified Bessel’s
function and 1F; (1 —%,%;Z) the  degenerate
hypergeometric function, respectively. While, E.(rg) is
the correlation energy and signified by

Y

—_— [ >1
Ec(rg) = {THBrsBirs Il sy)
Aplnrs + Bp + Cprslnrg + Dprs if 15 < 1

Where, the coefficients A,B,C,D,E,F and a are
depended on 75 and on the related values of the spins. They
are calculated through subsequent expressions.

Ay =1,
A, = —0.0211'53 + 0.04697‘52 —0.3403r5 — 0.1597,
By =0,

B,_ = 0.006573
Cyy = —0.003173 + 0.053972 —

—0.10017r¢ + 0.31947 + 0.3189,
0.3084rs + 0.1281,

Ci— = —0.00617r3 + 0.043272 + 0.2077r5 — 0.4261,
D,y = —0.0017¢ + 0.007rZ 4+ 0.001675 + 0.1896,
D,_ =0.000273 + 0.0233r2 — 0.338375 + 0.3161,
E,, = 0.0037% — 0.0392rZ + 0.1837r5 — 0.0577,

E,_ =—-0.0002r¢ — 0.0187& + 0.1291r5 — 0.1052,
Foy = —0.00087¢ + 0.0107r2 — 0.051575 — 0.0045,
F,_ = —0.00000873 + 0.00287¢ — 0.0153r + 0.0122,

a4y = 0.0007r3 — 0.0094r2 + 0.044475 + 0.4823,
a,_ = —0.0002r3 + 0.000672 + 0.039775 + 0.2161.

The best-fit parameters for the VMC radial
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distribution functions are used to fit these parameters. The
spin-polarised systems are denoted by the ‘++’ sign, while
the spin-unpolarized systems are denoted by the ‘-+’ sign.
The following method is used to determine the f(q).

fl@) = §[f++(Q) + fr-(@].

(52)

2.36. Sarkar-Sen-Haldar-Roy (SSHR) LFCF
(1998)

The LFCF proposed by Sarkar et al. [61] is developed
in the same way as the IU-function [50], obeying the
compressibility sum rule. But like Srivastava's LFCF [47],
it has an exponential form.

f(@) = A{1 —[1+ BX*]exp(—CX?)}. (53)
where, X = kq—F. While 4, B and C are the 75 dependent

parameters assumed by the expressions,

g(0) = —(%)2

With,
a =0.0301412,
b = —0.0084724176,
¢ = 0.0016291083,
d = —0.2386599,
e = 0.027960609.

Constants A and C are determined from the limiting
values of f(q).

A=limf(q)=1-g(0),
and C is found using the relation

lim £ (q) = AC (iL).

~yo =AC,

= 1_20(0) with,

a3 . a d
vo=025-(2)(2)" 8L (re? L (E00)),

Here, 1,(Z) is the first kind and first order Bessel’s
function.

2.37. Hellal-Gasser-Issolah (HGI) LFCF (2003)

The authors [62] have created semi-analytic
expressions of the static local-field correction (LFC)
function for the dielectric screening function describing
exchange and correlation effects in a homogeneous
electron gas using the fixed node diffusion Monte Carlo
(DMC) results obtained by Ortiz and Ballone [58]. The
prior well-known functions proposed by Vashista and
Singwi [43] and Ichimaru and Utsumi [50] were corrected
by these expressions, which also addressed several other
issues. Additionally, it complies with the 'compressibility
sum rule' for an interacting fermion system's physical
constraints. Such a model's mathematical formulation is
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expressed as

f(@)=[1-ZmM]XnDp(s)Z(", (54)
with,
_ 1 4?24 _a
Z(n) = 5+ o In |2—n|’ where, n = e

Such an analytical expression faithfully reproduces
the numerical values for metallic densities and the entire
g-range fluctuation. Density-dependent coefficients are
shown here as D, (r5). The condition G(0) = 0 is given
on the right-hand side of the aforementioned equation. at
the short wave limit,

. 3D_ 1

lim f(n) = Do~ Dy + ¥ +0(5). (59
If the local field correction is restricted in this case,

the term with coefficient D_; does not show up. As a

result, a fitting process is typically used to acquire the

physical information contained in the coefficients D,, (r5).
The three criteria listed below are used to fit such
coefficients based on the characteristics of the Lindhard
function [16].

D_y(r5) =0,

D,(rs) = limG(q) (if the local field correction is
n—)CX)

inadequate)

Zn Dn(TS) =0,

and
y = == Zn Dy (rs) = Dy (1))

The fitting parameter D, (rg) is determined by the
authors for various r values presented for the OB-VS case
and the OB-IU case.

For1<r; <3

Dy(rs) = 0.59334 + 0.104897r5 — 0.004917¢ + 1.7400x10™*r — 8.95027x10757¢,

D, (rg) = —0.32951 — 0.2123075 + 0.009657¢ + 130.44007x10 *rd — 145.95027x107°7¢,

D,(rs) = 5.30593 + 1.3167915 + 0.21208r¢ — 1684.25993x107*r¢ + 1560.04973x107°r¢,

D;(rs) = —15.07056 — 3.260708975 — 1.37773rZ + 7830.9401x10~*rd — 7529.95027x10~57¢,

D,(r5) = 22.02554 + 4.48947rs + 2.61918r2 — 13727.75993x10~4r3 + 13490.04973x10757¢,

Ds(rs) = —9.81589 — 2.40712rg — 1.47717rZ + 7868.54007x10~*rd — 8063.95027x10 1.

For3<rs<5

Do (7s) = 0.64995 + 0.094797r5 — 0.011917r2 + 16.30000x10~*rd — 0.12052x107 57,

D (rg) = 3.29115 — 2.5565375 + 0.434121¢ + 6.94645x10~*r — 2.39052x107 57,

D,(rs) = —24.77987 + 21.24814r — 3.782827¢ + 747.24645x10~*rd + 11.70948x107°r¢,

D4 (r) = 116.18740 — 88.973497 + 15.7246672 — 3562.35355x104r — 41.95052x10757¢,

D4(rs) = —211.65547 + 156.1542415 — 27.611891¢ + 7240.3465x107*r$ + 63.13948x10 574,

Ds(rg) = 136.96029 — 97.229167 + 17.26022r¢ — 4878.08355x10~*rd — 38.08052x10 57,

Similarly, for OB-IU case the following fitting equations are used. For 1 < rg < 5

Dy(rg) = 0.57353 4+ 0.1510075 — 0.01472r¢ — 0.510009x10~*rd + 1.17066x10>7¢,

D, (rs) = —0.28578 — 0.78691rg — 0.1201572 + 71.52999x10 *rd — 69.12934x107°r¢,

D,(rg) = 12.50176 + 3.83749r5 + 1.112587¢ — 554.48001x10~*r¢ + 531.37066x10~ 57,

D3(rs) = —61.25749 — 11.6323975 — 4.218297¢ + 2035.03999x10 *rd — 1952.62934x1057¢,

D,(rg) = 167.31876 + 20.8537875 + 7.663031¢ — 3744.64001x10*r¢ + 3608.57066x107°r¢,

Ds(rs) = —186.10675 — 18.83851r5 — 6.792337Z + 3367.4799x10~*rd — 3256.52934x10 574,
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Dg(rs) = 70.45671 + 6.5658675 + 2.34771r¢ — 1173.68001x10™*rd + 1137.67066x10>7¢.

2.38. Sarkar-Haldar-Roy-Sen (SHRS) LFCF (2004)

The authors [57] have proposed the following form of
the LFCF in the case of the ‘ferro’ (spin parallel) state
based on the precise density interpolation formulae and
the quantum Monte Carlo data of Ceperley and Alder [74,
75] for the correlation energy of electron gas in both the
‘para’ and ‘ferro’ states.

(@) = Ap{l — [1 + BpX*]exp(—CrX?)}. (56)

here, X = ki. Whereas A,B and C are the rg dependent
F

parameters. Factors A and C are obtained from the limiting
values of f(q).

A=1,
And utilising the relation, C is discovered.

C= Yo (TS) Wlth)

Yo(rs) = 0.25 — (£ (1)1/3 .5 d

24) \on S drs

(r—z 4
S drs

{Ec(rs)}).

B = a+ brg + cré + drslnrg + eréinrs.

With,
a=0.27120697,
b = 0.023367297,
¢ =0.0004025675,
d = —0.0067372145,
e =—6.3667962 x 107>,
And
Ec (rs) — 1+(11r5+az1”52+a3r_<)3‘+a4r§L

bo+b17Ts+byrE+b3r+byré+bsry’
a, = 0.24979381,
a, = 0.042193510,
a; = 0.00273095,
a, = 0.00003620,
b, = 0.01258694,
b; = 0.007263687,
b, = 0.00165158,
b; = 0.00017853,
by, = 7.9656334 x 1076,
bs = 6.47520896 x 1078,

4\1/3 )
Where, a = (Q) and E-(rs) is the electron

correlation energy for the ‘ferro’ state.

90 =355

11(2)

Here, 1,(Z) is the first kind and first order Bessel’s
function with z = 4(ars/m)/2.
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2.39. Dornheim-Vorberger-Groth-Hoffmann-
Moldabekov-Bonitz (DVGHMB) LFCF (2019-2020)

For the static LFCF of the uniform electron gas,
Dornheim and colleagues [64—-66] have extensively
presented new path integral Monte Carlo (PIMC) results.
These results are used to train a fully connected deep
neural network with respect to continuous wave-vectors,
densities, and temperatures covering the entire warm
dense matter regime. This LFCF's expression is provided

by

f(@) = A(@[1 - g(0)] + G (@[1 - A(q)] (57)

Where, Gp,(q) corresponds to the neutral-net and
A(q) is a straightforward activation function [64—67].
Additionally, they have created an analytical
parameterization of g(0) using the Spink et al. [76]
ground state results. They have published this formula
using the effective static approximation (ESA), which
permits extremely accurate computations of electronic
parameters like the interaction energy v, the dynamic
structure factor S(q,w) and the static structure factor

S(q).

2.40. Kukkonen-Chen (KC) LFCF (2021)

Kukkonen and Chen [67] wused variational
diagrammatic quantum Monte Carlo (VDQMC)
simulations to present their full spin-dependent LFCFs. In
the uniform three-dimensional electron gas, they have
discovered a straightforward quadratic formula that
quantitatively produces all of the response functions of the
electron gas at metallic concentrations of effective

electron-electron contact. This LFCF's notation is
represented by
2
_ _ ko q . 2 _ 4kp
fi(@) = (1 K) (_qTF) , with g7z = s (58)
2
_ __Xo q . 2 _ 4kp
f@=(1-2)(L), withgf =22, (59)

here,

Ko

s 1.0025 — 0.17217; — 0.003672,

% = 0.9825 — 0.12327, + 0.009172.

Both of these local field functions are smooth
functions of the wave vector, and the results reveal a little
rise over the quadratic between 1.5 and 2k, according to
the authors [67].

The LFCFs are important for improving calculations
of the electronic structures of the materials, particularly in
many-body perturbation theory and time-dependent
density functional theory (TDDFT). The study of LFCFs
is seeing new trends and development directions as
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computational materials science progresses. Beyond the forms of the LFCFs available in the literature.
Random Phase Approximation (RPA) method, machine The graphical nature of all the LFCFs are displayed in
learning (ML) can improve the LFCFs by comprehending Figures 3.1-3.3.
intricate relationships. Such models that rely on the Though it is necessary to examine the stability of
momentum and the frequency are being created to account various LFCFs against the model pseudopotential before
for both spatial and temporal dispersion. To improve its applications for the comprehensive study of metallic
accuracy without incurring the significant computational properties.
costs, material-specific and context-dependent LFCFs are The long wavelength limit (i.e. ¢ = 0) and short
being investigated. One of the main challenges is wavelength limit (i.e. ¢ — oo) are tabulated in Table 1 for
incorporating precise LFCF treatments into automated further comparison.
DFT and TDDFT pipelines. It is essential to strike a It is seen that the LFCFs due to KS, KM, KL, MD, T,
balance between computational efficiency and physical FHERR and KC give the infinite values at shorter
accuracy [77-81]. wavelength limit.

In order to modify the accuracy of calculated optical While, the SSTL, VS, 1], IU, NG, SSHR, OB, MCS,
spectra, dielectric properties and electron excitations, BB, HGI and SHRS functions give the constant value

modern ab initio codes have implemented particular depends on rg at g = oo while TW, OV, SR, AF, KR and
LFCFs with linearly differentiated fields. In order to TM give 0.762, 0.898, 0.316, 13/30, 0.3333 and 0.33365,

capture local field effects using the full microscopic respectively.

dielectric function, LFCFs are incorporated into the GW The remaining LFCFs are having value of 0.5 at ¢ —

and Bethe—Salpeter Equation (BSE) modules of VASP, oo limit.

CASTEP, Quantum ESPRESSO, and WIEN2k It is also observed from the Figures 1-3 that, the
computational codes. Numerical and theoretical models LFCFs due to TW, IU and FR gives a peak below g < 2kp
are both utilized by the Quantum ESPRESSO code to  which is a notable form in construct with the other

explicitly handle the LFCFs in the dielectric matrix and functions.
GW or BSE routines. By taking into consideration the off-

diagonal components of the microscopic dielectric matrix Finally, we conclude from the present article that, it
in the reciprocal space, the WIEN2k code uses LFCFs into represents a unique documentary data of the LFCEFs,
account when computing its optical properties and linear which are reported in chronological order. Such type of

response of the materials. Choosing the right written information is not available in the literature so far.
computational tool for precise ab initio predictions Hence, the present paper will attend a proper data set on
requires knowing which models are supported [82-87]. LFCFs for scientific community. Also, the role of LFCF in

the condensed matter physics are studied from the present

. article.
Conclusions

Following some general remarks are to be noted from Aditya M. Vora — Professor of Physics.
the present study,
The present study is totally focused on the various
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Koporkuii orssjg Ta poJib KoOpekui GyHKUil JOKAIBLHOI0 moJs y ¢izuui
KOH/JICHCOBAHUX CUCTEM

Kagheopa ¢izuxu, Yrieepcumemcvra wikona nayx, I'yoscapamcevkuil ynisepcumem, Axmedabao, I'yoxcapam, Inois,
voraam(@gmail.com

VY ormsizi BUCBITIIIOETHCS BXKIIMBICTD CHEKTPY KOPHTYBaNbHUX (yHKIIH tokansHOro nost (LFCFs) y ¢i3umi
KOHJICHCOBAHUX CTaHIB, sIKi 3yCTPIHAIOTHCS y Pi3HUX JITepaTypHHUX OTNIsAaX. 3arajioM, y JiTeparypi BussieHo 40
pizaux popm LFCFs. HaBeneno ocHoBHI mapametpu koxxHOI ¢yHKIIT LFCFs pa3om i3 kopoTkum omucom. ['ooBHa
MeTa — BHIIIATH Pi3Hi KOPEKIIii JIOKAILHOTO MOJIsl, OMyOIiKOBaHi B JIiTepaTypi mounHarouu 3 1957 poky Ta HajgaTi
HAYKOBIH CIIBHOTI MMOBHY JTOBIAKOBY 1H(OpPMALIIO.

Kanro4doBi cioBa: onxHOpiTHMUI eneKTpoHHUH Ta3; Kopekii ¢yskuii nokamsaoro nons (LFCFs); mudysiinmi
metox Monre-Kapio (DMC); Teopist TieneKTpU4IHOTO eKpaHyBaHHSI.
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