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Introduction 

In condensed matter physics, the dielectric screening 

plays an important role in the evaluation of self-consistent 

potential due to the screening of the electron gas. Such 

screening affects in elimination of the long-range 

Coulomb field of the ion [1-20].  

Bardeen [21] in the study of the electron-phonon 

interaction first of all utilizes the self-consistent method of 

screening by the electrons in the Hartree approximation. 

The dielectric function is particularly useful in such 

approximation where it leads to the potential that enters in 

one electron Schrödinger equation. If exchange and 

correlation effect is included in the screening (i.e. Hartree-

Fock approximation) then it enters as a non-local (energy 

dependent) potential and the problem becomes more 

difficult.  

While, the exchange and correlation interactions have 

been investigated extensively for the free electron gas 

using many body perturbation theories. As noted above 

the Hartree approximation neglects any direct electron-

electron interactions [2, 3]. In particular, the neglection of 

the requirement of the Pauli exclusion principle for 

antisymmetric wave functions is corrected in the Hartree-

Fock approximation which gives an extra exchange term 

in the energy. The correlation effects arise from the 

Coulomb repulsion between electrons, leading to the 

concept of a ‘correlation hole’ around each electron, 

which excludes other electrons. As in the case of screening 

there have been a number of calculation schemes proposed 

[2, 3, 22-67] to introduce such exchange and correlation 

effects of local field corrections into the potential via a 

modified dielectric function [2, 3, 22-67]. 

Looking to the advantages of screening and their local 

field corrections in the literature, there are large number of 

local field corrections functions are proposed by various 

authors in the literature [2, 3, 22-67] and reported in the 

present article. Also, their natures are plotted via 𝑓(𝑞) →
𝑞 graph and their limiting values at 𝑞 → 0 and 𝑞 → ∞ are 

also reported in Table 1. 

I. Dielectric Screening Theory 

In general, no one has yet determined the precise 

homogeneous gas dielectric function. Instead, a number of 

researchers have found approximations to the answers. 

Some of these have been discovered to be particularly 

effective due to their clarity or correctness. They have 

been given their inventors' names. These are their lists 

[11]: 

- Thomas-Fermi, 

- Lindhard or Random Phase Approximation (RPA), 

- Hubbard, and, 

- Singwi-Sjölander. 

A degenerate Fermi gas's dielectric function, 𝜀(𝑞), is 

typically expressed as 

 

 𝜀(𝑞) = 1 +
𝑞𝑆

2

𝑞2.  (1) 

 

Through 𝑞𝑆
2 = 4𝜋𝑒2𝑁(𝐸) is the screening length. 

Here, 𝑁(𝐸) is the density of state per energy 𝐸 and 

specified by 

 

 𝑁(𝐸) =
2Ω0

(2𝜋)3 ∫
𝑑𝑆𝑘

𝑔𝑟𝑎𝑑𝑘𝐸(𝑘)
 (2) 
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Table 1. 

Long wave length and Short wave length limits of LFCFs. 

Sr. 

No. 
Name of Screening Functions Year lim

𝐪→0
𝑓(𝒒) lim

𝑞→∞
𝑓(𝒒) 

1 Hubbard (HB) 1957 0 0.5 

2 Hubbard-Sham (HS) 1957 0 0.5 

3 Hubbard-Sham-Geldart-Vosko (HSGV) 1957 0 0.5 

4 Sham (SM) 1965 0 0.5 

5 Kohn-Sham (KS) 1965 0 ∞ 

6 Geldart-Vosko (GV) 1966 0 0.5 

7 Hartree (HT) 1967 - - 

8 Harrison (HR) 1967 0 0.5 

9 Kleinmann (KM) 1968 0 ∞ 

10 Ashcroft (AS) 1968 0 0.5 

11 Singwi-Tosi-Sjölander-Land (STSL) 1968 0 0.5 

12 Kleinmann-Langreth (KL) 1968 0 ∞ 

13 Shaw-Pynn (SP) 1969 0 0.5 

14 Singwi-Sjölander-Tosi-Land (SSTL) 1970 0 A 

15 Shaw (SH) 1970 0 0.5 

16 Toigo-Woodruff (TW) 1970 0 0.762 

17 King-Cutler (KC) 1971 0 0.5 

18 Overhouser (OV) 1971 0 0.898 

19 Mahanti-Das (MD) 1971 0 ∞ 

20 Vashishta-Singwi (VS) 1972 0 A 

21 Jain-Jain (JJ) 1973 0 A 

22 Pathak-Vashishta (PV) 1973 
2

3
𝛾 

2

3
[1 − 𝑔(0)] 

23 Kuglar (KR) 1975 
3

20
 

1

3
 = 0.3333 

24 Srivastava (SR) 1977 0 0.316 

25 Tripathi-Mandal (TM) 1977 0 0.33365 

26 Taylor (TY) 1978 0 ∞ 

27 Ichimaru-Utsumi (IU) 1981 0 1 − 𝑔(0) 

28 Alvarellos and Flores (AF) 1984 0.375 13 30⁄ = 0.4333 

29 Bhatia-Singh (BS) 1985 0 0.5 

30 Nagy (NG) 1986 
𝑞2

3𝐶2
[𝑔(0, 𝑛) − 3𝑏] 1 − 𝑔(0, 𝑛) 

31 Farid-Heine-Engle-Robertson (FHER) 1993 0 ∞ 

32 Gold-Calmels (GC) 1993 0 1 − 𝑔(0) 

33 Ortiz and Ballone (OB) 1994 𝛾0 (
𝑞

𝑘𝐹
)

2

 1 − 𝑔(0) 

34 Moroni, Ceperley-Senatore (MCS) 1995 𝐴 (
𝑞

𝑘𝐹
)

2

 𝐶 (
𝑞

𝑘𝐹
)

2

+ 𝐵 

35 Bretonnet-Boulahbak (BB) 1996 𝛾0 (
𝑞

𝑘𝐹
)

2

 1 − 𝑔(0) 

36 Sarkar-Sen-Haldar-Roy (SSHR) 1998 0 A 

37 Hellal, Gasser-Issolah (HGI) 2003 𝛾𝜂2 1 − 𝑔(0) 

38 Sarkar-Haldar-Roy- Sen (SHRS) 2004 1 − 𝑔(0) −𝑔(0) 

39 
Dornheim-Vorberger-Groth-Hoffmann-

Moldabekov-Bonitz  (DVGHMB) 
2020 0 1 − 𝑔(0) 

40 Kukkonen-Chen  (KC) 2021 

𝑓+(𝑞) = (1 −
𝜅0

𝜅
) 

𝑓−(𝑞) = (1 −
𝜒0

𝜒
) 

∞ 
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It exhibits a dielectric screening function after being 

substituted in Eq. (1), 

 

𝜀(𝑞) = 1 + (
8𝜋𝑍

Ω0𝑞2) (
2

3
𝐸𝐹)

−1

[0.5 +
4𝑘𝐹

2−𝒒𝟐

8𝒒𝑘𝐹
𝑙𝑛 |

𝒒+2𝑘𝐹

𝒒−2𝑘𝐹
|].(3) 

 

In this case, 𝑍 is the metal's valence, 𝐸𝐹  is the Fermi 

energy, and 𝑘𝐹 is the Fermi momentum. On the basis of 

the self-consistent treatment of screening, Bardeen [21] 

constructed this equation, which is a static Hartree 

dielectric constant. Lindhard [19] has also produced a 

formula for the dielectric function generated by the 

random phase approximation (RPA) as, 

 

 𝜀𝑅𝑃𝐴(𝑞) = 1 +
𝑞𝑆

2

𝑞2 = 1 + (
𝜆𝑆

𝑞2) ℱ(𝑞), (4) 

 

with 𝜆𝑆 =
4𝑘𝐹

𝜋𝑎0
ℱ and ℱ(𝑞) = [0.5 +

4𝑘𝐹
2−𝒒𝟐

8𝒒𝑘𝐹
𝑙𝑛 |

𝒒+2𝑘𝐹

𝒒−2𝑘𝐹
|].    

 

It is noticeable that how equations (3) and (4) are 

identical. The high electron density zone is the only one 

where the Lindhard function [16] is valid. Additionally, 

this idea does not take into account the short-term impacts. 

Due to its foundation being a sharp fermi surface, the 

electrons have an unlimited mean-free path. Leavens et al. 

[68] have developed a rough generalisation of such a 

function that takes the finite mean free path impact into 

account. At slightly higher temperatures, it might be more 

crucial for liquid metals [11]. 

Hubbard [23, 24] suggested a self-consistent approach 

to enhance the RPA value of the energy in their seminal 

articles, employing a complex diagrammatic technique. In 

this approach, he has included the exchange hole's 

contribution to the Hartree-Fock approximation. The 

modified Hartree dielectric function 𝜀∗(𝑞) [2, 3] is thus 

given by 

 

 𝜀∗(𝑞) = 1 + {𝜀𝐻(𝑞) − 1}{1 − 𝑓(𝑞)}. (5) 

 

The LFCF, often known as the exchange and 

correlation function, is 𝑓(𝑞). Additionally, the Hartree [2, 

3] dielectric function is 𝜀𝐻(𝑞). Such a function's 

mathematical notation is represented as [2,3]. 

 

𝜀𝐻(𝑞) = 1 +
3𝜋𝑒2𝑍

Ω0𝑌2𝑘𝐹
4 [1 +

4−𝑌2

2𝑌
𝑙𝑛 |

2+𝑌

2−𝑌
|]; with 𝑌 =

𝑞

2𝑘𝐹
.(6) 

 

Levine and Louie [69] postulated that the spatial 

dielectric function for semiconducting materials is of the 

type,

 

 𝜀𝐿𝐿(𝑞) = 1 +
1

𝐿𝑞2 [0.5 −
𝜆

4𝑦
(tan−1 𝑦+

𝜆
+ tan−1 𝑦−

𝜆
) + (

𝜆2

16𝑌2 +
1

4𝑌
−

𝑌

16
) 𝑙𝑛 (

𝜆2+𝑦+
2

𝜆2+𝑦−
2)]. (7)

 

with, 

 

 𝑦+ = 𝑌(2 + 𝑌),  

 

 𝑦− = 𝑌(2 + 𝑌),  

 

 𝐿 = √
𝜋

4𝑘𝐹
,  and   𝜆 =

2

√3𝐿2𝑘𝐹
2(𝜀0−1)

.  

 

Where, 𝜀0 signifies the finite dielectric constant of the 

semiconductor. 

The model band topologies make it clear that all of the 

d-sub bands are occupied and that the Fermi level only 

crosses the s-band, according to Singh and Prakash [70]. 

Therefore, the two forms of transition from the 

unoccupied s-band to the vacant s-band and from the 

occupied d-sub bands to empty s-bands, are what induce 

the electron to rearrange in response to the displacement 

of ions caused by lattice vibrations. In light of this, the 

dielectric function is provided by 

 

 𝜀(𝑝) = 1 − 𝜀𝑠𝑠(𝑝) − 𝜀𝑑𝑠(𝑝). (8) 

 

Where, 𝜀𝑠𝑠(𝑝) and 𝜀𝑑𝑠(𝑝) are −8𝜋
𝑝2⁄  times the 

polarizability functions rise from the intraband and 

interband transitions, respectively. And 𝑝 = 𝑞 + 𝐺 where 

𝑞 is the phonon wavevector and 𝑮 the reciprocal-lattice 

vector, respectively. The mathematical notations for 

𝜀𝑠𝑠(𝑝) and 𝜀𝑑𝑠(𝑝) are narrated by [70]  

 

 𝜀𝑠𝑠(𝑝) = −
2𝑚𝑠𝑘𝐹𝑠𝑒2

𝜋ℏ2𝑝2 [1 +
4𝑘𝐹𝑠

2 −𝑝2

4𝑘𝐹𝑠𝑝
𝑙𝑛 |

2𝑘𝐹𝑠+𝑝

2𝑘𝐹𝑠−𝑝
|], (9) 

 

and
 

 𝜀𝑑𝑠(𝑝) =
32𝑚𝑠𝑒2

Ω0ℏ2𝑝2
∑ (−1)𝑚 (∫ 𝑑𝑘𝑘2[𝐹2(𝑘)]2 {

𝐷0𝑚
2 𝐷0−𝑚

2 𝐼0

+(𝐷1𝑚
2 𝐷−1−𝑚

2 + 𝐷−1𝑚
2 𝐷1−𝑚

2 )𝐼1

+(𝐷2𝑚
2 𝐷−2−𝑚

2 + 𝐷−2𝑚
2 𝐷2−𝑚

2 )𝐼2

}
𝑘𝐹𝑑𝑚

0
)𝑚 .     (10)

 

Where, 

 

 𝑚𝑠 =
ℏ2𝑘𝐹𝑠

2

2𝐸𝐹
,  

 

 𝑘𝐹𝑠 = (
3𝜋2𝑍𝑠

Ω0
)

1 3⁄

,  

 

 𝑘𝐹𝑑𝑚 = (
3𝜋2𝑍𝑑𝑚

Ω0
)

1 3⁄

.  

 

Where, 𝐸𝐹  is the Fermi energy, 𝑍𝑠 the number of 𝑠-

electrons per atom, Ω0 the atomic volume and 𝑒 the 

electronic charge, respectively. While 𝐷𝑚𝑚
2  are the 

elements of rotation matrix with argument 
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(−𝛾′, −𝛽′, −𝛼′) where 𝛼′, 𝛽′, and 𝛾′ are the Euler's 

angles, 𝑘 is electron wave vector. 

 

 𝐼0 =
5

4
(0.5𝐼𝑛0 − 3𝐼𝑛2 + 4.5𝐼𝑛4),  

 

 𝐼1 =
15

4
(−𝐼𝑛2 + 𝐼𝑛4),  

 

 𝐼2 =
15

8
(0.5𝐼𝑛0 − 𝐼𝑛2 + 0.5𝐼𝑛4),  

 

here, 

 

 𝐼𝑛0 = −
1

𝑏
𝑙𝑛 |

𝑏−𝑎

𝑏+𝑎
|,  

 

 𝐼𝑛2 = −
1

𝑏
[

2𝑎

𝑏
+

𝑎2

𝑏2 𝑙𝑛 |
𝑏−𝑎

𝑏+𝑎
|],  

 

 𝐼𝑛4 = −
1

𝑏
[

2𝑎

3𝑏
+

2𝑎3

𝑏3 +
𝑎4

𝑏4 𝑙𝑛 |
𝑏−𝑎

𝑏+𝑎
|],  

 

 𝑎 = 𝑘2(𝑚𝑠 𝑚𝑑𝑚 − 1⁄ ) − 𝑝2,  

 

 𝑏 = 2𝑘𝑝.  

 

The radial component of the d-wave function is 

involved in the function 𝐹2(𝑘), which is defined as 

 

 𝐹2(𝑘) = ∫ 𝑗2(𝑘𝑟)𝑅𝑑(𝑟)𝑟2𝑑𝑟
∞

0
, (11) 

 

where 𝑗2(𝑘𝑟) is the spherical Bessel function and the 

radial part of the 𝑑 −wave function. 

 

 𝑅𝑑(𝑟) = ∑ 𝑎𝑖𝑟2𝑒−𝛼𝑖𝑟
𝑖 ,  

 

where, 𝑎𝑖 and 𝛼𝑖 are the two parameters. Such values are 

substituted in the equation above to get, 

 

 𝐹2(𝑘) = 48𝑘2 ∑
𝑎𝑖𝛼𝑖

(𝑘2+𝛼𝑖
2)

4𝑖 .  

 

There is no doubt that the compressibility sum rule is 

satisfied by the dielectric function 𝜀(𝑞) defined by Geldert 

and Vosko [26], but the pair correlation function obtained 

from it has a −∞, producing physically incorrect results. 

Although the pair correlation function is driven to infinity 

over the whole range of metallic densities, the dielectric 

function of Kleinman [28, 29] poses a major problem. The 

theory presented by Singwi and colleagues [34, 71] 

complies with both constraints. The dynamical structure 

factor 𝑆(𝑞) was specifically derived by their method from 

the correlation function, and the expression for the 

dielectric constant is given by relating 𝑆(𝑞) to the 𝜀(𝑞) 

derived from the local field corrections for Coulomb and 

exchange contributions,  

 

 𝜀(𝑞) = 1 + [𝑄0(𝑞) {1 − 𝑓(𝑞)𝑄0(𝑞)}⁄ ], (12) 

 

Here 

 

  𝑄0(𝑞) =
𝑞𝑠

2

𝑞2 =
4𝑘𝐹

𝜋𝑎0𝑞2
[

1

2
+

4𝑘𝐹
2−𝑞2

8𝑞𝑘𝐹
𝑙𝑛 |

𝑞+2𝑘𝐹

𝑞−2𝑘𝐹
|].  

 

The algebraically challenging expression for 𝑓(𝒒)  is
 

𝑓(𝑞) = (
9𝑞2

32𝑘𝐹
2) [(

2

105
) {24 (

𝑘𝐹
2

𝑞2) + 44 + (
𝑞

𝑘𝐹
)

2

} − (
2𝑘𝐹

𝑞
) {(

8

305
) (

𝑘𝐹

𝑞
)

2

−
4

15
+ (

1

16
) (

𝑞

𝑘𝐹
)

2

} 𝑙𝑛 |
2𝑘𝐹+𝑞

2𝑘𝐹−𝑞
| +

(
𝑞

𝑘𝐹
)

2

{(
1

210
) (

𝑞

𝑘𝐹
)

2

−
2

15
} 𝑙𝑛 |

𝑞2−4𝑘𝐹
2

𝑞2 |].  (13)

 

In order to get a self-consistent form, the cycle of 

equations describing the relationship between 𝑆(𝑞), 𝜀(𝑞), 

and the pair correlation function 𝑔(𝑟) is iteratively solved 

on a computer. 

Similar to this, Toigo and Woodruff [37] used the 

double-time Green function technique and a momentum-

saving decoupling scheme to derive a mathematical 

formula for the dielectric function of the electron liquid. A 

similar plan would include applying the f-sum rule to the 

dielectric function. Consequently, it is expressed as 

follows: 

 

 𝜀(𝑞, 𝜔) = 1 + [𝑄0(𝑞, 𝜔) 1 − 𝐺(𝑞, 𝜔)𝑄0(𝑞, 𝜔)⁄ ]. (14) 

 

The Lindhard function in the RPA approximation 

(polarizability of the free electron gas) is 𝑄0(𝑞, 𝜔) [16]. 

𝑝0(𝑞, 𝜔) comprises the exchange and correlation effects 

left out of the function 𝑄0(𝑞, 𝜔), whereas 

 (𝑞, 𝜔) =
𝑝0(𝒒,𝜔)

𝑄0(𝒒,𝜔)
. In the case of an electron liquid, 

 𝜔 = 0 transforms the equation above into 

 

 𝜀(𝑞, 0) = 1 + [𝑄0(𝑞, 0) 1 − 𝐺(𝑞, 0)𝑄0(𝑞, 0)⁄ ]. (15) 

 

Toigo and Woodruff's [37] tabulation of the values for 

Green's function 𝐺(𝑞, 0) is shown here. Geldert and 

Taylor [64] used perturbation theory to create a screening 

constant, confirming the discussion of it offered in [37]. 

Additionally, Vashishta and Singwi [43] have more 

precisely expanded the theory of collective motion's [7] 

applicability to electron screening. 

Unfortunately, the literature does not pay much 

attention to a thorough study of LFCFs. Because they 

necessitate a thorough handling of electronic many-body 

effects, an incredibly complex subject, a vast number of 

distinct approximations exist as a result. The local density 

functional (LDF) form proposed by Hedin and Lundquist 

[72] and Taylor [49] is the most straightforward and 

practical method for considering 𝑓(𝑞). 

The compressibility sum rule is a useful tool for 

navigating the extensive local field literature. There are 

further sum rules connecting the static dielectric function 

to the correlation energy, the electron-electron pair 

correlation function, etc., but the compressibility sum rule 

is by far the most significant, as the LDF theory's 

enormous success illustrates. Therefore, it has been 

demonstrated by studying the suggested local fields in the 

context of sum rules that all 𝑓(𝑞) expressions published 
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prior to 1970 are replaced by more recent work. The 

remaining methods, such as those proposed by Toigo and 

Woodruff [37], Vashishta and Singwi [43], Ichimaru and 

Utsumi [50], and Geldert and Taylor [73], merit further 

study. 

II. Several Forms of LFCFs 

Total 40 LFCFs that are listed in the literature are 

briefly discussed in this section, along with their accurate 

mathematical notations.    

 

2.1. Hubbard (HB) LFCF (1957)   

According to the Hubbard LFCF [23, 24], the 

exchange contact between parallel spin electrons 

essentially cancels out half of the direct, or Coulomb, 

interaction at very small wavelengths. It is noted as 

follows: 

 

 𝑓(𝑞) =
0.5𝒒𝟐

(𝒒𝟐+𝑘𝐹
2)

. (16) 

 

2.2. Hubbard-Sham (HS) LFCF (1957) 

The introduction of exchange between electrons with 

parallel ‘spins’ results in the Hubbard-Sham [23–25] 

LFCF. Hubbard-Sham effects are insufficient for low 𝑞 

values. The exchange and correlation function has the 

following form: 

 

 𝑓(𝑞) =
0.5𝒒𝟐

(𝒒𝟐+𝜁𝑘𝐹
2)

. (17) 

 

Here, parameter ξ = 
0.916

[0.458+0.01r𝑆]
 and r𝑆 is the Wigner-

Seitz radius. 

 

 

2.3. Hubbard-Sham-Geldart-Vosko LFCF 

(HSGV) (1957) 

The parameter 𝜉 in the Hubbard-Sham-Geldart-Vosko 

[23–26] LFCF is selected in a way that satisfies the 

compressibility sum rule. This LFCF violates the 

requirement that the electron pair correlation function 

𝑔(𝑟)  must be positive for all 𝑟 for tiny 𝑟 in the range of 

typically occurring r𝑆 values. It is provided by, 

 

 𝑓(𝑞) =
0.5𝒒2

𝒒2+𝜉2. (18) 

 

here, parameter ξ =  
2

[1+(
0.153

π𝐚0𝐤F
)]

. 

 

2.4. Sham (SM) LFCF (1965)   

Sham [25] changed the Hartree approximation by 

altering the Coulomb interaction between two electrons 

using the provided LFCF 𝑓(𝑞), which incorporates the 

Thomas-Fermi local field correction length 𝐾𝑇𝐹. 

 

 𝑓(𝑞) =
0.5𝒒𝟐

(𝒒𝟐+𝑘𝐹
2+𝐾𝑇𝐹

2 )
   with   𝐾𝑇𝐹

2 =
4𝑘𝐹

𝜋𝑎0
. (19) 

 

2.5. Kohn-Sham (KS) LFCF (1965) 

Approximation techniques for treating an 

inhomogeneous system of interacting electrons are created 

based on the theory of Hohenberg and Kohn [27]. For 

systems with slowly fluctuating or high densities, these 

approaches are precise. They result in self-consistent 

equations that are equivalent to the Hartree and Hartree-

Fock equations for the ground state, respectively. These 

equations provide additional effective potentials for the 

exchange and correlation parts of the chemical potential of 

a uniform electron gas. The same approach is used to treat 

electronic systems operating in magnetic fields and at 

limited temperatures. The function's expression is written 

as 

 

 𝑓(𝑞) = 1 −
𝐷

𝐷𝑂
(1 −

5𝑌2

6
),   (20) 

 

where 

 

 
𝐷

𝐷𝑂
= [1 +

𝑚𝑟𝑆

12.07
(1.47 + 0.0625𝑟𝑆 − 𝑙𝑛𝑟𝑆)]

−1

   

 

with 𝑌 =
𝑞

2𝑘𝐹
. 

 

2.6. Geldart-Vosko LFCF (GV) (1966) 

The many-body perturbation theory is used to 

examine the Geldart-Vosko [26] LFCF of an interacting 

electron gas at high metallic densities. The study is based 

on a fundamental relationship between the system's 

compressibility and the local field correction constant, 

also known as the zero-frequency small wave-vector 

LFCF. A connected set of integral equations for the 

propagator, the self-energy, the vertex function, and the 

LFCF is used to explore the basic problem of selecting a 

self-consistent set of graphs for computing the LFCF. On 

the basis of these findings, a modification of Hubbard's 

[23, 24] form of the LFCF is proposed. It's indicated by 

 

 𝑓(𝑞) =
0.5𝒒2

𝒒2+𝜉𝑘𝐹
2, (21) 

 

where, parameter ξ =  
2

[1+0.153(
𝐊TF

2

4𝐤F
2 )]

 and 𝐾𝑇𝐹
2 =

4𝑘𝐹

𝜋𝑎0
. 

 

2.7. Hartree (HT) LFCF (1967)   

It is a popular LFCF that is employed by the majority 

of researchers in all areas pertaining to metals. The Hartree 

[2, 3] dielectric function 𝜀𝐻(𝒒), discovered for the first 

time by Lindhard [19], is derived from the first-order 

perturbation and corresponds to those solid-state physics 

approximations, namely the Hartree model, which ignore 

interaction and electron correlation; for example, one can 

write 

 

 𝑓(𝑞) = 0. (22) 

 

According to equation (17), as 𝑞 → 0 at long 

wavelength limit 𝜀(𝑞) →
4𝑚𝑒2𝑘𝐹

𝜋ℏ2𝒒𝟐  or 𝜀(𝑞) → ∞, and at 

short wavelength limit i.e. 𝑞 → ∞, 𝜀(𝑞) → 1 +
16𝑚𝑒2𝑘𝐹

2

3𝜋ℏ2𝒒𝟐  or 

𝜀(𝑞) → 1. There is a tiny logarithmic singularity at  

𝑞 = 2𝑘𝐹. Additionally, this singularity may have a notable 

impact on qualities that depend on the dielectric function's 
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Fourier transform. 

 

2.8. Harrison (HR) LFCF (1967) 

At long wavelengths, Harrison [2, 3] has discovered 

that the form factors are unaffected by the LFCF and 

continue to be the same as in the Hartree computations. In 

this limit, the exchange potential is not insignificant, but 

the direct potential has adjusted itself so that the sum of 

the two is nearly equal to the Hartree potential. The LFCFs 

do not significantly change form factors or electrical 

characteristics at short wavelengths. It is provided by 

 

 𝑓(𝑞) =
0.5𝑞2

(𝑞2+
4

3
𝑘𝐹

2)
. (23) 

2.9. Kleinmann (KM) LFCF (1968) 

Kleinmann [28, 29] obtains the dynamic dielectric 

constants suited to electrons and to the test charge using 

self-consistent field approaches. This alters with the 

inclusion of the screened Hartree-Fock exchange. The 

formula for it is 

 

 𝑓(𝑞) = 
1

4
 (

𝒒2

𝒒2+𝜉𝒌𝑭
2 +  

𝒒2

𝜉𝒌𝑭
2), (24) 

 

where, parameter ξ =  
2

[1+(
0.153

π𝐚0𝐤F
)]

. 

 

The Coulomb contributions are less than the exchange 

contributions for high wave vectors (in the static limit), 

and the electronic dielectric constant decreases to less than 

one. Additionally, he develops screened exchange 

potentials that are linearly dependent on the charge density 

ρ(r), which appears to be more accurate for energy-band 

computations than the Slater 𝑛1 3⁄ (𝑟) approximation. 

 

2.10. Ashcroft (AS) LFCF (1968) 

The non-local screening by the electron gas and spin-

orbit coupling have both been added to Ashcroft's [30] 

theory of the model pseudopotential, with the latter 

consequence being far more significant. The variations in 

the matrix elements that arise in most metals are 

negligible, but simulations show that the effect of spin-

orbit coupling is to enhance resistivity, which is further 

amplified by non-local field correction. Its mathematical 

formulation is provided by 

 

 𝑓(𝑞) =
𝐘2

2
(Y2 +  βAS)−1, (25) 

 

with, parameter βAS =
1

2
(1 + 0.0152λ)−1 , λ =

1

π𝐤F
. 

 

2.11. Singwi-Tosi-Sjölander-Land (STSL) LFCF 

(1968) 

Singwi et al.'s improved version of the dielectric 

function [31] explicitly and roughly includes the short-

range correlations resulting from both the Coulomb and 

exchange effects. Consequently, the following method can 

be used to determine dielectric function in a self-

consistent manner:

 

 𝑓(𝑞) =
9

32
𝑋2 {

2

105
(

24

𝑋2 + 44 + 𝑋2) −
2

𝑋
(

8

35𝑋2 −
4

15
+

𝑋2

6
) ln |

𝑋+2

𝑋−2
|

+𝑋2 (
𝑋2

210
−

2

15
) 𝑙𝑛 |1 −

4

𝑋2|
}.  (26)

 

where, X =
q

kF
. 

 

2.12. Kleinmann-Langreth (KL) LFCF (1968) 

It is demonstrated that the approximation created by 

Kleinmann [28, 29] and Langreth [32] is erroneous overall 

but performs admirably in a huge static q-limit. An 

approximate integral equation for the local field 

corrections of the electron gas is solved using the 

variational principle. It is demonstrated that the equation 

for the dielectric constant can be solved using the simplest 

trial functions and that this solution is accurate in both the 

limits of small and large momentum transfer. The 

variational calculation's dielectric constant is used to 

construct an equation for the ground-state energy and is 

written as 

 𝑓(𝑞)=
1

4
[

𝑞2

(𝑞2+𝑘𝐹
2+𝑘𝑆

2)
+

𝑞2

(𝑘𝐹
2+𝑘𝑆

2)
], (27) 

 

where, 𝑘𝑆
2 =

2𝑘𝐹

𝜋𝑎0
. 

 

2.13. Shaw-Pynn (SP) LFCF (SP) (1969) 

The LFCF mentioned above was developed by Shaw 

and Pynn [33] and is more appropriate than Hubbard's 

form [19]. The notation reads as follows: 

 

 𝑓(𝑞) =
1

2
[1 − 𝑒𝑥𝑝 (−

𝑞2

𝛽𝑘𝐹
2)] +

𝛾𝑞2

𝑘𝐹
3 𝑒𝑥𝑝 (−

𝛼𝑞2

𝛾𝑘𝐹
). (28) 

 

Where β=0 for the Kohn-Sham approximation, γ=0, 

but the optimal values are 𝛽 =2, 𝛾 = 0.0123,  

𝛼 = 0.0538. Here, the first term depicts the energy of 

exchange, and the second term, the energy of correlation.  

 

2.14. Singwi-Sjölander-Tosi-Land (SSTL) LFCF 

(1970) 

The local field correction of the coulomb potential 

entering the local field is the consequence of the pair 

correlation function being adjusted to the external field, 

according to Singwi and colleagues [34]. The density 

correlation function and the dielectric function in the 

metallic density range have been evaluated using self-

consistent numerical methods, and they are provided as 

 

 𝑓(𝑞)=A [1 − 𝑒𝑥𝑝 (−B
q2

kF
2)], (29) 

 

where, 𝐴 = 1.0630 − 0.153𝑘𝐹 and 𝐵 = −0.2736 +

0.61𝑘𝐹
1 5⁄

. 

 

2.15. Shaw (SH) LFCF (1970) 

Shaw [35, 36] has given two standards for 
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determining if a LFCF 𝑓(𝑞) is appropriate: (1) the degree 

to which 𝑓(𝑞) (the pair correlation function) is physically 

valid and (2) self-consistent. 

Shaw [35, 36] has proposed the above LFCF 𝑓(𝑞) 

based on the aforementioned criteria. 

It is represented mathematically as follows:  

 

 𝑓(𝑞)=
1

2
[1 − exp (−

𝑞2

ξkF
2)], (30) 

here, parameter 𝜉 =
2

1+0.0254rs
. 

Second expression was also proposed by Shaw 

[35, 36] 

 

𝑓(𝑞) = 1 − 𝑒𝑥𝑝(−0.535𝑌2)   with 𝑌 =
𝑞

𝑘𝐹
  (31) 

 

2.16. Toigo-Woodruff (TW) LFCF (1970) 

A novel method for computing the frequency and 

wave-vector-dependent dielectric response function has 

been described by Toigo-Woodruff [37]. The dielectric 

function is based on decoupling and using a moment-

conserving technique to solve the equations of motion for 

the charge-density operators' Green's function. This 

technique yields an expression for the dielectric function 

in the static limit (𝜔 → 0), which depends on 𝑓(𝒒), for 

which numerical values are derived and tabulated for 

small, moderate, and high values of 𝒒. This expression is 

shown in Table 2 below. 

 

2.17. King-Cutler (KC) LFCF (KC) (1971) 

By extrapolating between the short and long 

wavelength constraints, King and Cutler [38–40] have 

developed the LFCF 𝑓(𝒒). They discovered that the 

correlation was negligible in comparison to the exchange 

interaction and hence disregarded the correlation's impact. 

It is spelled as 

 

 𝑓(𝑞)=
0.5𝑞2

𝑞2+2𝑘𝐹
2. (32) 

 

2.18. Overhouser (OV) LFCF (1971) 

The condensed theory of electron correlation in 

metals was presented by Overhouser [41]. Here, a model 

that enables computing the correlation effect of interacting 

electrons is devised. The plasma frequency 𝜔(𝑞) is 

determined by requiring the model to have a valid 

electron-gas dielectric function, as stated above, and the 

interaction coefficient is determined by satisfying the f-

sum rule. Additionally, the 𝑞-dependence of the exchange 

and correlation contributions to the one-electron energy 

𝐸(𝑞) is almost the reverse. It is expressed in textual form 

as 

 

 𝑓(𝒒)=
0.275𝑋2

(1+2.5𝑋2+0.09375𝑋4)
1
2

,  (33) 

 

where, 𝑋 =
𝑞

𝑘𝐹
. 

 

2.19. Mahanti-Das (MD) LFCF (1971) 

By screening the bare Coulomb potential with the 

Thomas-Fermi model of the dielectric function and 

applying a specific local approximation, Mahanti and Das 

[42] created the LFCF 𝑓(𝑞). Although the Thomas-Fermi 

model left the local field correction parameter ξ as an open 

parameter to be calculated from experimental values, it 

provided the value of the parameter as a function of 𝑟𝑆 

(electron sphere radius). The importance of the exchange 

core polarisation effect and the exchange-enhancement 

impact of the susceptibility caused by electron-electron 

contact are clearly characterised using the Mahanti-Das 

dielectric function [42]. It is demonstrated that one can 

reach an overall agreement with experiment by taking into 

account these effects in addition to the relativistic 

corrections to the spin density for heavier alkali metals. Its 

expression is described as 

 

 𝑓(𝑞)=
1

2
{

q2

kF
2(ξ

2
+1)

+
q2

q2+kF
2(ξ

2
+1)

},  (34) 

 

where, ξ=
2

1+0.026rs
. 

 

2.20. Vashishta-Singwi (VS) LFCF (1972) 

At metallic concentrations, electron correlations have 

been changed by Vashishta and Singwi [43]. The 

modification entails incorporating the pair correlation 

function into an external weak field via the equilibrium 

pair correlation function's density derivative. The local-

field correction fulfilling the compressibility sum rule is 

given a new expression as a result, which is stated as 
 

 𝑓(𝑞) = A [1 − exp (−B
q2

kF
2)].  (35) 

Where, 𝐴 = 0.4666 + 0.3735k𝐹

−
2

3 and  

𝐵 = −0.0085 + 0.3318k𝐹

1

5 . 

 

Table 2.  

Numerical Values of Toigo-Woodruff LFCF. 

𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 

0.1 0.00251 1.1 0.25231 2.1 0.74824 3.1 0.72873 5 0.74886 

0.2 0.01001 1.2 0.3046 2.2 0.73439 3.2 0.73037 6 0.753 

0.3 0.02257 1.3 0.42162 2.3 0.72756 3.3 0.73199 7 0.75547 

0.4 0.04021 1.4 0.48534 2.4 0.72416 3.4 0.73355 8 0.75705 

0.5 0.06296 1.5 0.55147 2.5 0.72275 3.5 0.73503 2x103 0.76213 

0.6 0.09081 1.6 0.61871 2.6 0.72309 3.6 0.73644   

0.7 0.12374 1.7 0.68493 2.7 0.72309 3.7 0.73776   

0.8 0.16171 1.8 0.74631 2.8 0.72418 3.8 0.739   

0.9 0.20461 1.9 0.79435 2.9 0.72558 3.9 0.74016   

1.0 0.25231 2.0 0.78999 3.0 0.7271 4.0 0.74124   
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2.21. Jain-Jain (JJ) LFCF (1973) 

On the basis of the ideas of Singwi et al. [31] and 

utilising new details on 𝑔(0) from the partial-wave phase-

shift analysis, Jain and Jain [44] present a 

phenomenological definition for the local field correction 

term 𝑓(𝒒). Such a shape almost exactly satisfies the 

compressibility sum rule, and the current plan results in 

positivity of 𝑔(𝑟) at 𝑟 ≈ 0 for every 𝑟𝑆 from 1 to 6. Such 

a function's mathematical expression is as follows: 

 
𝑓(𝑞) = 𝐴[1 − 𝑒𝑥𝑝(−𝐵𝑞2) − 𝑞2 exp(−𝐶𝑞2) + 𝛿(𝑞)].  (36) 

 

Where, the constants are 
 

 𝛿(𝑞) = 0.75𝑞2exp(−10𝑞2),  
 

 𝐴 = 0.9395 or 𝐴 = 1 − 𝑔(0),  
 

 𝐵 = 0.6068.  

 

 𝐶 = 4.5541.  
 

Here, 𝑔(0) ≈
32

(8+3𝑟𝑆)2 and lies in the range of  

0 < 𝑔(0) < 0.5.  
 

2.22. Pathak-Vashishta (PV) LFCF (1973) 

An equation for the local-field correction has been 

provided by Pathak and Vashishta [45]. It is derived by 

using the third frequency moment of the spectrum 

function of the electron-density response function with the 

self-consistent method of Singwi et al. [34]. This local 

field is connected to the imaginary portion of the dielectric 

function by the fluctuation-dissipation theorem and is a 

functional of the structure factor 𝑆(𝑞). Its mathematical 

equivalent is
 

 𝑓(𝑞) = −
3

4
∫ 𝑑𝑞

∞

0
𝑞2(𝑆(𝑞) − 1) {

5

6
−

𝑘𝐹
2

2𝑞2 +
(𝑘𝐹

2−𝑞2)
2

4𝑘𝐹𝑞3 𝑙𝑛 |
𝑘𝐹+𝑞

𝑘𝐹−𝑞
|}. (37) 

 

2.23. Kuglar (KR) LFCF (1975) 

The wave-vector and frequency-dependent dielectric function of an electron gas, 𝜀(𝒌, 𝜔), has been proposed by 

Kuglar [46] and is described in terms of Lindhard's function. Additionally, he has developed a sophisticated local field 

correction, denoted by the notation 𝐺(𝒌, 𝜔), that encompasses all of the impacts of dynamic exchange and correlation in 

the system. 

 

𝑓(𝑞) = −
3

16
{

32

63𝑌2
−

608

943
−

142

315
𝑌2 −

2

315
𝑌4 +

𝑌4

35
(2 −

𝑌2

18
) 𝑙𝑛 |1 −

4

𝑌2
| +

1

𝑌
(−

32

63𝑌2
+

24

35
) −

2

5
𝑌2 +

1

6
𝑌4 𝑙𝑛 |

𝑌+2

𝑌−2
|}  with 𝑌 =

𝑞

𝑘𝐹
(38)

 

2.24. Srivastava (SR) LFCF (1977) 

Srivastava [47] presented the exponential form of the 

LFCF, which takes into account the effects of exchange 

and correlation on conduction electrons, which are taken 

into account independently by employing distinct 

dielectric local field corrections in various characteristics. 

 

 𝑓(𝑞) =
1

2
[1 − exp (−

q2

(q2+𝜉kF
2)

)]. (39) 

 

Where, ξ =
2

[1+
3(1−2λ2)

5+6λ2 ]
 , λ2 = (πa0kF)−1. 

 

2.25. Tripathi-Mandal (TM) LFCF (1977) 

By using effective mean field theory to solve the 

equation of motion for the double-time retarded 

commutator of the classical density fluctuation operators, 

Tripathi and Mandal [48] were able to get the density 

response function. Additionally, it is discovered that the 

local field correction's notation is similar to that obtained 

by Pathak and Vashishta [43]. For small, intermediate, and 

large values of q, the numerical values of the LFCF are 

calculated and tabulated and are displayed in Table 3. 

 

2.26. Taylor (TY) LFCF (1978) 

Taylor's [49] LFCF complies with the compressibility 

sum rule. A straightforward and practical analytic form of 

the static electron gas dielectric function is constructed 

using this LFCF, 𝑓(𝒒). A straightforward formula for the 

static electron gas dielectric function that takes exchange 

and correlation effects into account produces estimated 

physical parameters with remarkably high levels of 

accuracy and has excellent formal support. The notation 

reads as follows: 

 

 𝑓(𝒒) =
q2(1+

0.1534

𝜋kF
)

4kF
2 . (40) 

 

2.27. Ichimaru-Utsumi (IU) LFCF (1981) 

A formula that fits the compressibility sum rule and 

the short-range correlation microscopic computations has 

been put out by Ichimaru and Utsumi [50] for the dielectric 

LFCF of the degenerate electron liquid. The equation of 

continuity, long-time relaxation behaviour, static and 

dynamic local-field correlations, and frequency-moment 

sum rules are some of the physical criteria that are satisfied 

by the longitudinal dielectric response function for a 

strongly coupled plasma. It is symbolised by
 

 𝑓(𝑞) = AX4 + BX2 + C + {[A𝑋4 + (𝐵 +
8

3
𝐴) 𝑋2 − 𝐶]

(4−𝑋2)

4X
ln |

2+X

2−X
|}. (41)

 

where, X =
q

kF
. While 𝐴, 𝐵 and 𝐶are the 𝑟𝑆 dependent parameters given by the expressions 
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 𝐴 = 0.029 (0 ≤ 𝑟𝑆 ≤ 15),  
 

 𝐵 = (
9

16
) 𝛾0 − (

3

64
) {1 − 𝑔(0)} − (

16

15
) 𝐴,  

 

 𝐶 = (−
3

4
) 𝛾0 + (

9

16
) {1 − 𝑔(0)} − (

16

15
) 𝐴,  

 

𝛾0 = 0.25 − (
𝜋

24
) (

4

9𝜋
)

1 3⁄

𝑟𝑆
5 𝑑

𝑑𝑟𝑠
(𝑟𝑆

−2 𝑑

𝑑𝑟𝑠
{𝐸𝐶(𝑟𝑆)}),  

 

 𝑔(0) =
1

8
(

𝑍

𝐼1(𝑍)
).  

 

Here, the correlation energy is indicated by 𝐸𝐶 (𝑟𝑆), 

and 𝐼1(𝑍) is the first order modified Bessel's function. 

 

 𝑟𝑆
𝑑

𝑑𝑟𝑠
{𝐸𝐶(𝑟𝑆)} = 𝑏0 (

1+𝑏1𝑥

1+𝑏1𝑥+𝑏2𝑥2+𝑏3𝑥3) ; 𝑥 = √𝑟𝑆.  

 

With 𝑏0 = 0.0621814, 𝑏1 = 9.81379, 𝑏2 = 2.8224 

and 𝑏3 = 0.736411. 

 

2.28. Alvarellos-Flores (AF) LFCF (1984) 

By using a new approach, Alvarellos and Flores [51] 

have presented a local field effect in both the static and 

dynamic limits. In essence, it is an expansion of Slater's 

treatment method for exchange and correlation effects in 

an electron liquid, which falls short of several other 

approaches described in the literature. They acquire static 

𝑓(𝑞) and contrast their pair correlation function and 

correlation energy results with those obtained using 

alternative techniques. They noticed that their method 

gives reasonable agreement with more complex methods 

for metallic densities and is suitable for high densities. The 

key benefit of the suggested static local field correction, 

𝑓(𝑞), is that it turns out to be a universal function of 
𝑞

𝑘𝐹
⁄  

(𝑘𝐹 is the Fermi wavelength), which is an easy expression 

to employ in calculating metallic characteristics. Table 4 

tabulates the numerical values of the function 𝑓(𝑞). 

 

2.29. Bhatia-Singh (BS) LFCF (1985) 

The exchange and correlation function proposed by 

Sham [25] has been updated by Bhatia and Singh [52] by 

including the second half of the Thomas-Fermi screening 

length term in the calculation 𝑓(𝐪). The exchange and 

correlation potentials must be equivalent to those for a 

uniform electron gas at that density at very low 

wavelengths. It is spelled as 
 

 𝑓(𝑞) =
0.5q2

(q2+kF
2+

1

2
KTF

2 )
. (42) 

 

Where, KTF
2 =

4kF

πa0
. 

Table 3. 

Numerical Values of Tripathi-Mandal LFCF 

𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 

0.1 0.00248 1.6 0.99096 2.09 0.88639 3.5 0.40636 14.0 0.33704 

0.2 0.00995 1.7 1.20813 2.1 0.8625 3.6 0.40126 15.0 0.33657 

0.3 0.02255 1.8 1.47685 2.2 0.70973 3.7 0.39672 16.0 0.33619 

0.4 0.04048 1.9 1.79698 2.3 0.62802 3.8 0.39265 16.0 0.33587 

0.5 0.06407 1.95 1.94114 2.4 0.57537 3.9 0.38898 17.0 0.33661 

0.6 0.09372 1.99 1.96407 2.5 0.53814 4.0 0.38566 18.0 0.33539 

0.7 0.13003 2.0 1.8992 2.6 0.51025 5.0 0.36454 19.0 0.3352 

0.8 0.17371 2.01 1.75113 2.7 0.48852 6.0 0.35427 20.0 0.33456 

0.9 0.22572 2.02 1.32512 2.8 0.47109 7.0 0.34842 25.0 0.33422 

1.0 0.28727 2.03 1.20682 2.9 0.45681 8.0 0.34476 30.0 0.33379 

1.1 0.35994 2.04 1.12736 3 0.44489 9.0 0.3423 45.0 0.33371 

1.2 0.44576 2.05 1.06708 3.1 0.43479 10.0 0.34058 50.0 0.33365 

1.3 0.54745 2.06 1.01855 3.2 0.42614 11.0 0.33931 90.0 0.33704 

1.4 0.66862 2.07 0.97803 3.3 0.41866 12.0 0.33836   

1.5 0.8142 2.08 0.94335 3.4 0.41212 13.0 0.33762   

 

Table 4. 

Numerical Values of Alvarellos-Flores LFCF. 

𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 𝒒 𝑓(𝒒) 

0.1 0.00376 1.1 0.44053 1.9 0.82237 2.6 0.53185 20.0 0.43451 

0.2 0.01510 1.2 0.51311 1.95 0.79455 2.7 0.52170 30.0 0.43386 

0.3 0.03411 1.3 0.58591 2.0 0.73579 2.8 0.51322 40.0 0.43363 

0.4 0.06084 1.4 0.65647 2.05 0.67897 2.9 0.50602 50.0 0.43352 

0.5 0.09524 1.5 0.72166 2.1 0.64777 3.0 0.49984     

0.6 0.13713 1.6 0.77749 2.15 0.62494 4.0 0.46662   

0.7 0.18617 1.7 0.81862 2.2 0.60693 5.0 0.45365   

0.8 0.24187 1.75 0.83148 2.3 0.57970 6.0 0.44710   

0.9 0.30351 1.8 0.83760 2.4 0.55970 8.0 0.44331   

1.0 0.37014 1.85 0.83536 2.5 0.54423 10.0 0.43813   
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2.30. Nagy (NG) LFCF (1986) 

Most current Nagy’s static LFCF [53] is specified by,  

 

 𝑓(𝑞) = 1 − 𝑔(0, 𝑛) +
𝑐𝑏

𝑐2+𝑞2 −
𝑔(0,𝑛)

𝑞
 𝑡𝑎𝑛−1 (

𝑞

𝑐
).  (43) 

 

Here, 𝑔(𝑟, 𝑛) is the density dependent pair-correlation 

function supposed to having analytical form 

 

 𝑔(𝑟, 𝑛) = 1 + (𝑎 + 𝑏𝑟)𝑒𝑥𝑝(−𝑐𝑟).  

 

From the analysis of the 𝑠-wave Schrödinger equation 

in the 𝑟 → 0+ limit it is identified that 

 

 
𝑑

𝑑𝑟
[𝑙𝑛𝑔(𝑟, 𝑛)]𝑟=0 = 1.  

 

It gives a precise formulation for 𝑔(𝑟, 𝑛) with 𝑟 = 0. 

 

 𝑔(0, 𝑛) =
1

2
[

1+2𝑒𝑥𝑝(−0.6𝑟𝑆)

1+𝑒𝑥𝑝(−0.6𝑟𝑆)+2𝑟𝑆
],  

 

with, 

 

 𝑎 = 𝑔(0, 𝑛) − 1,  

 

 𝑏 = 𝑔(0, 𝑛)(1 + 𝑐) − 𝑐,  

 

 𝑐 = (
𝑅

2
)

0.5

[1 + (
−2𝐴

{2𝑅}1.5 − 1)
0.5

],  

 

𝑅 = {(
𝐴

4
)

2
+ [(

𝐴

4
)

4
− (

𝐵

3
)

3
]

0.5

}

1
3⁄

+ {(
𝐴

4
)

2
− [(

𝐴

4
)

4
− (

𝐵

3
)

3
]

0.5

}

1
3⁄

, 

 

 𝐴 = −
24

𝑟𝑆
3 [1 − 𝑔(0, 𝑛)],  

 

 𝐵 =
18

𝑟𝑆
3 𝑔(0, 𝑛).  

 

2.31. Farid-Heine-Engle-Robertson (FHER) 

LFCF (1993) 

An improved and extremely precise formulation for 

𝑓(𝑞, 𝜔 → 0) is given by Farid et al. in [54]. According to 

the precise frequency moments of the density-density 

correlation function, this expression satisfies the exact 

asymptotic results for the short- and long-wavelength 

limitations. Although this 𝑓(𝑞, 0) and the 𝑓(𝑞) of the IU-

function [50] share some similarities, they are 

fundamentally different. Farid et al. [54] also present a 

model for this function, along with some very accurate 

interpolation expressions for a number of the coefficients 

both in this and 𝑓(𝑞, 0). This is because 𝑓(𝑞, 0) involves 

momentum moments of the momentum distribution 

function of the interacting electron gas. Consequently, it 

is symbolised by 

 

 𝑓(𝑞) = (𝐴𝑋4 + 𝐵𝑋2 + 𝐶) + {[(𝐴𝑋4 + 𝐷𝑋2 − 𝐶)
(4−𝑋2)

4𝑋
] 𝑙𝑛 |

2+𝑋

2−𝑋
|},  (44) 

 

where, 𝑋 =
𝑞

𝑘𝐹
. While 𝐴, 𝐵, 𝐶 and 𝐷 are the 𝑟𝑆 dependent 

parameters specified by the following expressions 

 

𝐴 = (
63

64
) 𝑎0 − (

15

4096
) {𝑏0

𝐴 − 2(𝑏0
𝐵 + 𝑏0

𝐶)} − 16𝑏−2,  

 𝐵 = (
9

16
) 𝛾0 + (

7

16
) 𝑏−2 − (

3

64
) 𝑏0 − (

16

15
) 𝐴,  

 𝐶 = (−
3

4
) 𝛾0 + (

3

4
) 𝑏−2 − (

9

16
) 𝑏0 − (

16

5
) 𝐴,  

 𝐷 = (
9

16
) 𝛾0 − (

9

16
) 𝑏−2 − (

3

64
) 𝑏0 + (

8

5
) 𝐴,  

𝛾0 = 0.25 − (
𝜋

24
) (

4

9𝜋
)

1 3⁄

𝑟𝑆
5 𝑑

𝑑𝑟𝑠
(𝑟𝑆

−2 𝑑

𝑑𝑟𝑠
{𝐸𝐶(𝑟𝑆)}),  

 𝑏𝑂 = 𝑏𝑂
𝐴 + 𝑏𝑂

𝐵 + 𝑏𝑂
𝐶 ,  

 𝑏𝑂
𝐴 =

2

3
[1 − 𝑔(0)],  

 𝑏𝑂
𝐵 =

48𝐸𝐹
2

35𝜔𝑃
2 𝛿4,  

 𝑏𝑂
𝐶 = −

16𝐸𝐹
2

25𝜔𝑃
2 [2𝛿2 + 𝛿2

2],  

 𝑏−2 =
4𝐸𝐹

2

5𝜔𝑃
2 𝛿2,  

 
𝐸𝐹

2

𝜔𝑃
2 =

1

12𝜆4𝑟𝑆
,  

 𝜆 → 𝛼 = (
4

9𝜋
)

1 3⁄

= 0.52106,  

 𝑎𝑂 = 0.029 (0 ≤ 𝑟𝑆 ≤ 15),  

 𝛿2 =
∑ 𝜉𝑗𝑥𝑗6

𝑗=1

𝑥4+∑ 𝜌𝑗𝑥𝑗3
𝑗=0

      with 𝑥 = 𝑟𝑠
1 2⁄

,  

 𝜉1 = −2.2963827 × 10−3,  

 𝜉2 = 5.6991691 × 10−2,  

 𝜉3 = −0.8533622,  

 𝜉4 = −8.7736539,  

 𝜉5 = 0.7881997,  

 𝜉6 = −1.2707788 × 10−2,  

 𝜌𝑂 = −79.9684540,  

 𝜌1 = −140.5268938,  

 𝜌2 = −35.2575566,  

 𝜌3 = −10.6331769,  

 
𝛿4

𝛿2
=

∑ 𝜑𝑗𝑥𝑗8
𝑗=0

𝑥6+∑ 𝜚𝑗𝑥𝑗5
𝑗=0

,  

 𝜑0 = 23.0118890,  

 𝜑1 = −64.8378723,  

 𝜑2 = 63.5105927,  

 𝜑3 = −13.9457829,  

 𝜑4 = −12.6252782,  

 𝜑5 = 13.8524989,  

 𝜑6 = −5.2740937,  

 𝜑7 = 1.0156885, 

 𝜑8 = −1.1039532 × 10−2, 

 𝜚𝑂 = 9.5753544, 

 𝜚1 = −32.9770151, 

 𝜚2 = 48.2528870, 

 𝜚3 = −38.7189788, 

 𝜚4 = 20.5595956, 

 𝜚5 = −6.3066750, 

 𝑍 = 4 (
𝛼𝑟𝑆

𝜋
)

1 2⁄

= 4𝜆1 2⁄ , 

 𝜆 =
𝛼𝑟𝑆

𝜋
, 

 

 𝑔(0) =
1

8
(

𝑍

𝐼1(𝑍)
)

2

. 

 

Here, 𝐼1(𝑍) is the Bessel’s function of first kind and 

first order. 

 

3.32. Gold-Calmels (GC) LFCF (1993) 

With the aid of the sum-rule variant of Singwi et al.'s 

[34] self-consistent technique, Gold and Calmels [55] 

suggested the local field correction for the two-
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dimensional and three-dimensional electron gas. They 

reported their findings within the 0.001 < 𝑟𝑠 < 100 

tolerance. They compute the LFCF using an analytical 

expression for the static structure factor that represents a 

generalised Feynman-Bijl spectrum. Such a function's 

mathematical expression is provided by 

 

 𝑓(𝑞) = 𝑟𝑠

3

4 (
0.846𝑌2

2.188𝐶13(𝑟𝑠)+𝑌2𝐶23(𝑟𝑠)
). (45) 

 

Where, 𝐶13(𝑟𝑠) = 1.0956𝑟𝑠

1

4 and 𝐶23(𝑟𝑠) = 1.6911𝑟𝑠

3

4. 

In his extended papers, Gold [56, 57] has modified 

and discussed this function for two-dimensional and three-

dimensional electron gases. 

 

2.33.Ortiz-Ballone (OB) LFCF (1994) 

Density functional theory has been proposed by the 

authors [58] as a means of describing exchange and 

correlation in inhomogeneous systems. The density range 

0.8 ≤ 𝑟𝑆 ≤ 10, which is the most relevant for density 

functional computations, has been fitted using the 

analytical form developed by the authors, which is closely 

linked to Ichimaru and Utsumi [50]. They use variational 

Monte Carlo (VMC) and fixed-node diffusion Monte 

Carlo methods to analyse the three-dimensional uniform 

electron gas in the Fermi liquid domain. Here, the VMC 

approach is used to analyse the spin dependency energy. 

In a rhombic dodecahedron cell (fcc Wigner-Seitz cell) 

with periodic boundary conditions (PBCs), they have 

considered 𝑁 = 𝑁↓ + 𝑁↑ electrons. The number of spin-up 

(-down) electrons in the cell is 𝑁↑(↓). Despite the modest 

drawback of having to impose the PBCs during the 

simulation, this cell's almost spherical shape is preferable 

because it more closely resembles the isotropic 

environment of the fluid phase than the ordinary cubic 

cell. By using sum rules and approximative relations, the 

authors have fitted 𝑔(𝑟) to a straightforward analytical 

expression that looks like this:

 

 𝑓𝜇,𝜈 (
𝑞

𝑘𝐹
) = 1 + [

𝐴𝜇,𝑣 + 𝐵𝜇,𝑣 (
𝑞

𝑘𝐹
) + 𝐶𝜇,𝑣 (

𝑞

𝑘𝐹
)

2

+ 𝐷𝜇,𝑣 (
𝑞

𝑘𝐹
)

3

+𝐸𝜇,𝑣 (
𝑞

𝑘𝐹
)

4

+ 𝐹𝜇,𝑣 (
𝑞

𝑘𝐹
)

5 ]  𝑒𝑥𝑝 (−𝜂𝜇,𝑣 (
𝑞

𝑘𝐹
)

2

). (46)

 

Where the spin is indicated by the symbols 𝜇 and 𝜈. 

The coefficients 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 and 𝜂, on the other hand, 

rely on 𝑟𝑆 and the corresponding values of the 𝜇 and 𝜈 

spins. These parameters are calculated using the 

relationships listed below. 
 

 𝐴++ = −1,  

𝐴+− = −0.0005𝑟𝑆
3 + 0.0201𝑟𝑆

2 − 0.24172𝑟𝑆 − 0.1039, 

 𝐵++ = 0,  

𝐵+− = 0.011𝑟𝑆
3 − 0.1879𝑟𝑆

2 + 0.7794𝑟𝑆 + 0.0714,  

𝐶++ = −0.0019𝑟𝑆
3 + 0.0396𝑟𝑆

2 − 0.2872𝑟𝑆 + 1.3061,  

𝐶+− = −0.0162𝑟𝑆
3 + 0.2564𝑟𝑆

2 − 0.8082𝑟𝑆 − 0.0419, 

𝐷++ = 0.0036𝑟𝑆
3 − 0.0738𝑟𝑆

2 + 0.4972𝑟𝑆 − 1.3074, 

𝐷+− = 0.0102𝑟𝑆
3 + 0.1315𝑟𝑆

2 − 0.4486𝑟𝑆 + 0.6049, 

𝐸++ = −0.0019𝑟𝑆
3 + 0.0382𝑟𝑆

2 − 0.2438𝑟𝑆 + 0.5104, 

𝐸+− = −0.018𝑟𝑆
3 + 0.0278𝑟𝑆

2 − 0.0683𝑟𝑆 − 0.0171, 

𝐹++ = 0.0003𝑟𝑆
3 − 0.0062𝑟𝑆

2 + 0.0373𝑟𝑆 − 0.0698, 

𝐹+− = 0.0001𝑟𝑆
3 − 0.0021𝑟𝑆

2 + 0.0047𝑟𝑆 + 0.0018, 

𝜂++ = −0.0009𝑟𝑆
3 + 0.0215𝑟𝑆

2 − 0.1552𝑟𝑆 + 0.5155,  

𝜂+− = −0.0059𝑟𝑆
3 + 0.0896𝑟𝑆

2 − 0.31𝑟𝑆 + 0.3491. 
 

The best-fit parameters for the VMC radial 

distribution functions are used to fit these parameters. The 

spin-polarised systems are denoted by the ‘++’ sign, while 

the spin-unpolarized systems are denoted by the ‘-+’ sign. 

The following method is used to determine the 𝑓(𝑞). 

 

 𝑓(𝑞) =
1

2
[𝑓++(𝑞) + 𝑓+−(𝑞)]. (47) 

 

2.34. Moroni-Ceperley-Senatore (MCS) LFCF 

(1995) 

The density-density static response of the electron gas 

at absolute zero and in the metallic domain has been 

assessed by the authors [59] using a diffusion Monte Carlo 

method. With a crossover about 2𝑘𝐹, the computed local 

field factor 𝑓(𝑞) smoothly interpolates between the 

asymptotic small and big 𝑞 behaviour. The local density 

approximation to density functional theory for 𝑞 ≤ 2𝑘𝐹 

accurately reproduces its almost asymptotic behaviour. 

Such a function's basic formula is 

 

𝑓(𝑞) = ([(𝐴 − 𝐶)−𝑛 + (
𝑞2

𝐵𝑘𝐹
2)

𝑛

]
−1 𝑛⁄

+ 𝐶) (
𝑞

𝑘𝐹
)

2

. (48) 

 

With 𝑛 ≅ 8 for 𝑟𝑆 = 2 and 𝑟𝑆 = 5 and 𝑛 ≅ 4  for 𝑟𝑆 =
10. The constants used in current formulation is calculated 

by 

 

𝐴(𝑟𝑆) =
1

4
+

(
−𝑑𝜇𝐶

𝑑𝑛0
⁄ )

(4𝜋𝑒2

𝑘𝐹
2⁄ )

= −0.033773726 with 𝜇𝐶  is 

the correlation contribution to the chemical potential of 

the uniform electron gas. It is consuming value near by 

−
1

3𝜋2. 

 

 𝐵(𝑟𝑆) =
(1+𝑎1𝑥+𝑎2𝑥3)

(3+𝑏1𝑥+𝑏2𝑥3)
. (49) 

 

Here, 𝑥 = √𝑟𝑆 and 𝑎1 = 2.15, 𝑎2 = 0.435,  

𝑏1 = 1.57 and 𝑏2 = 0.409. 

𝐶(𝑟𝑆) =
𝜋

2𝑒2𝑘𝐹
[

−𝑑(𝑟𝑆𝜀𝐶)

𝑑𝑟𝑆
] = 0.071033081 with 𝜀𝐶  the 

correlation energy per particle.  

 

2.35. Bretonnet-Boulahbak (BB) LFCF (1996) 

Bretonnet and Boulahbak [60] have proposed a semi-

analytical form of the LFCF 𝑓(𝒒) for the uniform electron 

gas in the density range 0 < 𝑟𝑆 < 10, which faithfully 

reproduces the most recent diffusion Monte Carlo results 

of Ortiz and Ballone [58]. This is in accordance with the 
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scheme of Singwi et al. [34]. The formula for 𝑓(𝑞) is as 

follows: 

 

𝑓(𝑞) = 1 − 𝑔(0) − 𝑒−𝑧 ∑ 𝐶𝜇
6
𝜇=0 1𝐹1 (1 −

𝜇

2
,

3

2
; 𝑧). (50) 

 

Where, 

 𝑧 =
1

4
(

9𝜋

4
)

2 3⁄
𝜂2

𝑎
,  

 𝛾 = −0.103756,  

 𝛽1 = 0.56371,  

 𝛽2 = 0.27358,  

 𝐴𝑝 = 0.031091,  

 𝐵𝑝 = −0.046644,  

 𝐶𝑝 = −0.00419,  

 𝐷𝑝 = −0.00983,  

 𝐶0 =
𝐵

2
√𝜋 𝑎⁄ ,  

 𝐶1 =
𝐶−𝑎𝐴

𝑎
,  

 𝐶2 =
3𝐷−2𝑎𝐵

4
√𝜋 𝑎3⁄ ,  

 𝐶3 =
2𝐸−𝑎𝐶

𝑎2 ,  

 𝐶4 =
3

8
(5𝐹 − 2𝑎𝐷)√𝜋 𝑎5⁄ ,  

 𝐶5 =
2𝐸

𝑎2,  

 𝐶6 =
15

8
𝐹√𝜋 𝑎5⁄ ,  

 𝛾0 =
1

4
− (

𝜋𝛼

12
) (

4

9𝜋
)

1 3⁄

𝑟𝑆
5 𝑑

𝑑𝑟𝑠
(𝑟𝑆

−2 𝑑

𝑑𝑟𝑠
{𝐸𝐶(𝑟𝑆)}),   

 𝑔(0) =
1

8
(

𝑍

𝐼1(𝑍)
)

2

,  

 𝛼 = (
4

9𝜋
)

1 3⁄

.  

 

Here, 𝐼1(𝑍) is the first order modified Bessel’s 

function and 1𝐹1 (1 −
𝜇

2
,

3

2
; 𝑧) the degenerate 

hypergeometric function, respectively. While, 𝐸𝐶(𝑟𝑆) is 

the correlation energy and signified by 

 

𝐸𝐶(𝑟𝑆) = {

𝛾

1+𝛽1√𝑟𝑆+𝛽2𝑟𝑆
                                         𝑖𝑓 𝑟𝑆 > 1

𝐴𝑝𝑙𝑛𝑟𝑆 + 𝐵𝑃 + 𝐶𝑝𝑟𝑆𝑙𝑛𝑟𝑆 + 𝐷𝑝𝑟𝑆      𝑖𝑓 𝑟𝑆 < 1
. (51) 

 

Where, the coefficients 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 and 𝑎 are 

depended on 𝑟𝑆 and on the related values of the spins. They 

are calculated through subsequent expressions. 

 

 𝐴++ = −1,  

𝐴+− = −0.021𝑟𝑆
3 + 0.0469𝑟𝑆

2 − 0.3403𝑟𝑆 − 0.1597,   

 𝐵++ = 0,  

𝐵+− = 0.0065𝑟𝑆
3 − 0.1001𝑟𝑆

2 + 0.3194𝑟𝑆 + 0.3189,  

𝐶++ = −0.0031𝑟𝑆
3 + 0.0539𝑟𝑆

2 − 0.3084𝑟𝑆 + 0.1281,  

𝐶+− = −0.0061𝑟𝑆
3 + 0.0432𝑟𝑆

2 + 0.2077𝑟𝑆 − 0.4261,  

𝐷++ = −0.001𝑟𝑆
3 + 0.007𝑟𝑆

2 + 0.0016𝑟𝑆 + 0.1896,  

𝐷+− = 0.0002𝑟𝑆
3 + 0.0233𝑟𝑆

2 − 0.3383𝑟𝑆 + 0.3161,  

𝐸++ = 0.003𝑟𝑆
3 − 0.0392𝑟𝑆

2 + 0.1837𝑟𝑆 − 0.0577,  

𝐸+− = −0.0002𝑟𝑆
3 − 0.018𝑟𝑆

2 + 0.1291𝑟𝑆 − 0.1052,  

𝐹++ = −0.0008𝑟𝑆
3 + 0.0107𝑟𝑆

2 − 0.0515𝑟𝑆 − 0.0045,  
𝐹+− = −0.000008𝑟𝑆

3 + 0.0028𝑟𝑆
2 − 0.0153𝑟𝑆 + 0.0122,  

𝑎++ = 0.0007𝑟𝑆
3 − 0.0094𝑟𝑆

2 + 0.0444𝑟𝑆 + 0.4823,  

𝑎+− = −0.0002𝑟𝑆
3 + 0.0006𝑟𝑆

2 + 0.0397𝑟𝑆 + 0.2161.  

 

The best-fit parameters for the VMC radial 

distribution functions are used to fit these parameters. The 

spin-polarised systems are denoted by the ‘++’ sign, while 

the spin-unpolarized systems are denoted by the ‘-+’ sign. 

The following method is used to determine the 𝑓(𝑞). 

 

 𝑓(𝑞) =
1

2
[𝑓++(𝑞) + 𝑓+−(𝑞)]. (52) 

 

2.36. Sarkar-Sen-Haldar-Roy (SSHR) LFCF 

(1998) 

The LFCF proposed by Sarkar et al. [61] is developed 

in the same way as the IU-function [50], obeying the 

compressibility sum rule. But like Srivastava's LFCF [47], 

it has an exponential form. 

 

 𝑓(𝑞) = 𝐴{1 − [1 + 𝐵𝑋4]𝑒𝑥𝑝(−𝐶𝑋2)}. (53) 

where, 𝑋 =
𝑞

𝑘𝐹
. While 𝐴, 𝐵 and 𝐶 are the 𝑟𝑆 dependent 

parameters assumed by the expressions, 

 

 𝑔(0) =
1

8
(

𝑍

𝐼1(𝑍)
)

2

.  

 

With, 

 𝑎 = 0.0301412,  

 𝑏 = −0.0084724176,  

 𝑐 = 0.0016291083,  

 𝑑 = −0.2386599,  

 𝑒 = 0.027960609.  

 

Constants 𝐴 and 𝐶 are determined from the limiting 

values of 𝑓(𝑞). 

 

 𝐴 = lim
𝑞→0

𝑓(𝑞) = 1 − 𝑔(0),   

 

and 𝐶 is found using the relation 

 

 lim
𝑞→0

𝑓(𝑞) = 𝐴𝐶 (
𝑞

𝑘𝐹
),  

 

 ∴ 𝛾𝑂 = 𝐴𝐶,  

 

 ∴ 𝐶 =
𝛾𝑂

1−𝑔(0)
 with,  

 

𝛾0 = 0.25 − (
𝜋

24
) (

4

9𝜋
)

1 3⁄

𝑟𝑆
5 𝑑

𝑑𝑟𝑠
(𝑟𝑆

−2 𝑑

𝑑𝑟𝑠
{𝐸𝐶(𝑟𝑆)}),  

 

Here, 𝐼1(𝑍) is the first kind and first order Bessel’s 

function. 

 

2.37. Hellal-Gasser-Issolah (HGI) LFCF (2003) 

The authors [62] have created semi-analytic 

expressions of the static local-field correction (LFC) 

function for the dielectric screening function describing 

exchange and correlation effects in a homogeneous 

electron gas using the fixed node diffusion Monte Carlo 

(DMC) results obtained by Ortiz and Ballone [58]. The 

prior well-known functions proposed by Vashista and 

Singwi [43] and Ichimaru and Utsumi [50] were corrected 

by these expressions, which also addressed several other 

issues. Additionally, it complies with the 'compressibility 

sum rule' for an interacting fermion system's physical 

constraints. Such a model's mathematical formulation is 
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expressed as 

 

 𝑓(𝑞) = [1 − 𝑍(𝜂)] ∑ 𝐷𝑛(𝑟𝑆)𝑍(𝜂)𝑛
𝑛 ,   (54) 

 

with, 

 

𝑍(𝜂) =
1

2
+

4−𝜂2

8𝜂
𝑙𝑛 |

2+𝜂

2−𝜂
|, where, 𝜂 =

𝑞

𝑘𝐹
. 

 

Such an analytical expression faithfully reproduces 

the numerical values for metallic densities and the entire 

q-range fluctuation. Density-dependent coefficients are 

shown here as 𝐷𝑛(𝑟𝑆). The condition 𝐺(0) = 0 is given 

on the right-hand side of the aforementioned equation. at 

the short wave limit, 

 

 lim
𝜂→∞

𝑓(𝜂) = 𝐷0 − 𝐷−1 +
3𝐷−1

4
𝜂2 + 𝑂 (

1

𝜂2). (55) 

 

If the local field correction is restricted in this case, 

the term with coefficient 𝐷−1 does not show up. As a 

result, a fitting process is typically used to acquire the 

physical information contained in the coefficients 𝐷𝑛(𝑟𝑆). 

The three criteria listed below are used to fit such 

coefficients based on the characteristics of the Lindhard 

function [16]. 

 

 𝐷−1(𝑟𝑆) = 0,  

 

𝐷𝑛(𝑟𝑆) = lim
𝜂→∞

𝐺(𝑞) (if the local field correction is 

inadequate) 

 

∑ 𝐷𝑛(𝑟𝑆)𝑛 = 0,  

 

and  

 𝛾 = −
1

12
∑ 𝑛[𝐷𝑛(𝑟𝑆) − 𝐷𝑛−1(𝑟𝑆)]𝑛 .   

 

The fitting parameter 𝐷𝑛(𝑟𝑆) is determined by the 

authors for various 𝑟𝑆 values presented for the OB-VS case 

and the OB-IU case. 

For 1 ≤ 𝑟𝑆 ≤ 3 

 

 𝐷0(𝑟𝑆) = 0.59334 + 0.10489𝑟𝑆 − 0.00491𝑟𝑆
2 + 1.7400𝑥10−4𝑟𝑆

3 − 8.95027𝑥10−5𝑟𝑆
4,  

 

 𝐷1(𝑟𝑆) = −0.32951 − 0.21230𝑟𝑆 + 0.00965𝑟𝑆
2 + 130.44007𝑥10−4𝑟𝑆

3 − 145.95027𝑥10−5𝑟𝑆
4,  

 

 𝐷2(𝑟𝑆) = 5.30593 + 1.31679𝑟𝑆 + 0.21208𝑟𝑆
2 − 1684.25993𝑥10−4𝑟𝑆

3 + 1560.04973𝑥10−5𝑟𝑆
4,  

 

 𝐷3(𝑟𝑆) = −15.07056 − 3.2607089𝑟𝑆 − 1.37773𝑟𝑆
2 + 7830.9401𝑥10−4𝑟𝑆

3 − 7529.95027𝑥10−5𝑟𝑆
4,  

 

 𝐷4(𝑟𝑆) = 22.02554 + 4.48947𝑟𝑆 + 2.61918𝑟𝑆
2 − 13727.75993𝑥10−4𝑟𝑆

3 + 13490.04973𝑥10−5𝑟𝑆
4,  

 

 𝐷5(𝑟𝑆) = −9.81589 − 2.40712𝑟𝑆 − 1.47717𝑟𝑆
2 + 7868.54007𝑥10−4𝑟𝑆

3 − 8063.95027𝑥10−5𝑟𝑆
4.  

 

For 3 ≤ 𝑟𝑆 ≤ 5      

 

 𝐷0(𝑟𝑆) = 0.64995 + 0.09479𝑟𝑆 − 0.01191𝑟𝑆
2 + 16.30000𝑥10−4𝑟𝑆

3 − 0.12052𝑥10−5𝑟𝑆
4,  

 

 𝐷1(𝑟𝑆) = 3.29115 − 2.55653𝑟𝑆 + 0.43412𝑟𝑆
2 + 6.94645𝑥10−4𝑟𝑆

3 − 2.39052𝑥10−5𝑟𝑆
4,  

 

 𝐷2(𝑟𝑆) = −24.77987 + 21.24814𝑟𝑆 − 3.78282𝑟𝑆
2 + 747.24645𝑥10−4𝑟𝑆

3 + 11.70948𝑥10−5𝑟𝑆
4,  

 

 𝐷3(𝑟𝑆) = 116.18740 − 88.97349𝑟𝑆 + 15.72466𝑟𝑆
2 − 3562.35355𝑥10−4𝑟𝑆

3 − 41.95052𝑥10−5𝑟𝑆
4,  

 

 𝐷4(𝑟𝑆) = −211.65547 + 156.15424𝑟𝑆 − 27.61189𝑟𝑆
2 + 7240.3465𝑥10−4𝑟𝑆

3 + 63.13948𝑥10−5𝑟𝑆
4,  

 

 𝐷5(𝑟𝑆) = 136.96029 − 97.22916𝑟𝑆 + 17.26022𝑟𝑆
2 − 4878.08355𝑥10−4𝑟𝑆

3 − 38.08052𝑥10−5𝑟𝑆
4.  

 

Similarly, for OB-IU case the following fitting equations are used. For 1 ≤ 𝑟𝑆 ≤ 5  

 

 𝐷0(𝑟𝑆) = 0.57353 + 0.15100𝑟𝑆 − 0.01472𝑟𝑆
2 − 0.510009𝑥10−4𝑟𝑆

3 + 1.17066𝑥10−5𝑟𝑆
4,  

 

 𝐷1(𝑟𝑆) = −0.28578 − 0.78691𝑟𝑆 − 0.12015𝑟𝑆
2 + 71.52999𝑥10−4𝑟𝑆

3 − 69.12934𝑥10−5𝑟𝑆
4,  

 

 𝐷2(𝑟𝑆) = 12.50176 + 3.83749𝑟𝑆 + 1.11258𝑟𝑆
2 − 554.48001𝑥10−4𝑟𝑆

3 + 531.37066𝑥10−5𝑟𝑆
4,  

 

 𝐷3(𝑟𝑆) = −61.25749 − 11.63239𝑟𝑆 − 4.21829𝑟𝑆
2 + 2035.03999𝑥10−4𝑟𝑆

3 − 1952.62934𝑥10−5𝑟𝑆
4,  

 

 𝐷4(𝑟𝑆) = 167.31876 + 20.85378𝑟𝑆 + 7.66303𝑟𝑆
2 − 3744.64001𝑥10−4𝑟𝑆

3 + 3608.57066𝑥10−5𝑟𝑆
4,  

 

 𝐷5(𝑟𝑆) = −186.10675 − 18.83851𝑟𝑆 − 6.79233𝑟𝑆
2 + 3367.4799𝑥10−4𝑟𝑆

3 − 3256.52934𝑥10−5𝑟𝑆
4,  
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 𝐷6(𝑟𝑆) = 70.45671 + 6.56586𝑟𝑆 + 2.34771𝑟𝑆
2 − 1173.68001𝑥10−4𝑟𝑆

3 + 1137.67066𝑥10−5𝑟𝑆
4. 

 

2.38. Sarkar-Haldar-Roy-Sen (SHRS) LFCF (2004) 

The authors [57] have proposed the following form of 

the LFCF in the case of the ‘ferro’ (spin parallel) state 

based on the precise density interpolation formulae and 

the quantum Monte Carlo data of Ceperley and Alder [74, 

75] for the correlation energy of electron gas in both the 

‘para’ and ‘ferro’ states. 

 

 𝑓(𝑞) = 𝐴𝐹{1 − [1 + 𝐵𝐹𝑋4]𝑒𝑥𝑝(−𝐶𝐹𝑋2)}. (56) 

 

here, 𝑋 =
𝑞

𝑘𝐹
. Whereas 𝐴, 𝐵 and 𝐶 are the 𝑟𝑆 dependent 

parameters. Factors 𝐴 and 𝐶 are obtained from the limiting 

values of 𝑓(𝑞). 

 

 𝐴 = 1,   

 

And utilising the relation, 𝐶 is discovered. 

 

𝐶 = 𝛾𝑂(𝑟𝑆) with, 

 

𝛾0(𝑟𝑆) = 0.25 − (
𝜋

24
) (

4

9𝜋
)

1 3⁄

𝑟𝑆
5 𝑑

𝑑𝑟𝑠
(𝑟𝑆

−2 𝑑

𝑑𝑟𝑠
{𝐸𝐶 (𝑟𝑆)}). 

 

 𝐵 = 𝑎 + 𝑏𝑟𝑆 + 𝑐𝑟𝑆
2 + 𝑑𝑟𝑆𝑙𝑛𝑟𝑆 + 𝑒𝑟𝑆

2𝑙𝑛𝑟𝑆.  

 

With, 

 𝑎 = 0.27120697,  

 𝑏 = 0.023367297,  

 𝑐 = 0.0004025675,  

 𝑑 = −0.0067372145,  

 𝑒 = −6.3667962 × 10−5.  

 

And 

 

𝐸𝐶(𝑟𝑆) =
1+𝑎1𝑟𝑆+𝑎2𝑟𝑆

2+𝑎3𝑟𝑆
3+𝑎4𝑟𝑆

4

𝑏0+𝑏1𝑟𝑆+𝑏2𝑟𝑆
2+𝑏3𝑟𝑆

3+𝑏4𝑟𝑆
4+𝑏5𝑟𝑆

5,  

 𝑎1 = 0.24979381,  

 𝑎2 = 0.042193510,  

 𝑎3 = 0.00273095,  

 𝑎4 = 0.00003620,  

 𝑏0 = 0.01258694,  

 𝑏1 = 0.007263687,  

 𝑏2 = 0.00165158,  

 𝑏3 = 0.00017853, 

 𝑏4 = 7.9656334 × 10−6, 

 𝑏5 = 6.47520896 × 10−8. 

 

Where, 𝛼 = (
4

9𝜋
)

1 3⁄

and 𝐸𝐶(𝑟𝑆) is the electron 

correlation energy for the ‘ferro’ state.  

 

 𝑔(0) =
1

8
(

𝑍

𝐼1(𝑍)
)

2

.  

 

Here, 𝐼1(𝑍) is the first kind and first order Bessel’s 

function with 𝑧 = 4(𝛼𝑟𝑆 𝜋⁄ )1 2⁄ .  

 

 

2.39. Dornheim-Vorberger-Groth-Hoffmann-

Moldabekov-Bonitz  (DVGHMB) LFCF (2019-2020) 

For the static LFCF of the uniform electron gas, 

Dornheim and colleagues [64–66] have extensively 

presented new path integral Monte Carlo (PIMC) results. 

These results are used to train a fully connected deep 

neural network with respect to continuous wave-vectors, 

densities, and temperatures covering the entire warm 

dense matter regime. This LFCF's expression is provided 

by 

 

𝑓(𝑞) = 𝐴(𝑞)[1 − 𝑔(0)] + 𝐺𝑛𝑛(𝑞)[1 − 𝐴(𝑞)] (57) 

 

 

Where, 𝐺𝑛𝑛(𝑞) corresponds to the neutral-net and 

𝐴(𝑞) is a straightforward activation function [64–67]. 

Additionally, they have created an analytical 

parameterization of 𝑔(0) using the Spink et al. [76] 

ground state results. They have published this formula 

using the effective static approximation (ESA), which 

permits extremely accurate computations of electronic 

parameters like the interaction energy 𝜐, the dynamic 

structure factor 𝑆(𝒒, 𝜔) and the static structure factor 

𝑆(𝒒). 

 

2.40. Kukkonen-Chen  (KC) LFCF (2021) 

Kukkonen and Chen [67] used variational 

diagrammatic quantum Monte Carlo (VDQMC) 

simulations to present their full spin-dependent LFCFs. In 

the uniform three-dimensional electron gas, they have 

discovered a straightforward quadratic formula that 

quantitatively produces all of the response functions of the 

electron gas at metallic concentrations of effective 

electron-electron contact. This LFCF's notation is 

represented by 

 

 𝑓+(𝑞) = (1 −
𝜅0

𝜅
) (

𝑞

𝑞𝑇𝐹
)

2

, with 𝑞𝑇𝐹
2 =

4𝑘𝐹

𝜋𝑎0
, (58) 

 

 𝑓−(𝑞) = (1 −
𝜒0

𝜒
) (

𝑞

𝑞𝑇𝐹
)

2

, with 𝑞𝑇𝐹
2 =

4𝑘𝐹

𝜋𝑎0
,   (59) 

 

here,  

 

 
𝜅0

𝜅
= 1.0025 − 0.1721𝑟𝑠 − 0.0036𝑟𝑠

2,  

 

 
𝜒0

𝜒
= 0.9825 − 0.1232𝑟𝑠 + 0.0091𝑟𝑠

2.  

 

Both of these local field functions are smooth 

functions of the wave vector, and the results reveal a little 

rise over the quadratic between 1.5 and 2𝑘𝐹, according to 

the authors [67]. 

The LFCFs are important for improving calculations 

of the electronic structures of the materials, particularly in 

many-body perturbation theory and time-dependent 

density functional theory (TDDFT). The study of LFCFs 

is seeing new trends and development directions as  
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Fig. 1. Comparisons of Various LFCFs-1. Fig.2. Comparisons of Various LFCFs-2. 

 
Fig. 3. Comparisons of Various LFCFs-3. 

 



Aditya M. Vora 

 516 

computational materials science progresses. Beyond the 

Random Phase Approximation (RPA) method, machine 

learning (ML) can improve the LFCFs by comprehending 

intricate relationships. Such models that rely on the 

momentum and the frequency are being created to account 

for both spatial and temporal dispersion. To improve 

accuracy without incurring the significant computational 

costs, material-specific and context-dependent LFCFs are 

being investigated. One of the main challenges is 

incorporating precise LFCF treatments into automated 

DFT and TDDFT pipelines. It is essential to strike a 

balance between computational efficiency and physical 

accuracy [77-81]. 

In order to modify the accuracy of calculated optical 

spectra, dielectric properties and electron excitations, 

modern ab initio codes have implemented particular 

LFCFs with linearly differentiated fields. In order to 

capture local field effects using the full microscopic 

dielectric function, LFCFs are incorporated into the GW 

and Bethe–Salpeter Equation (BSE) modules of VASP, 

CASTEP, Quantum ESPRESSO, and WIEN2k 

computational codes. Numerical and theoretical models 

are both utilized by the Quantum ESPRESSO code to 

explicitly handle the LFCFs in the dielectric matrix and 

GW or BSE routines. By taking into consideration the off-

diagonal components of the microscopic dielectric matrix 

in the reciprocal space, the WIEN2k code uses LFCFs into 

account when computing its optical properties and linear 

response of the materials. Choosing the right 

computational tool for precise ab initio predictions 

requires knowing which models are supported [82-87]. 

Conclusions 

Following some general remarks are to be noted from 

the present study, 

The present study is totally focused on the various 

forms of the LFCFs available in the literature. 

The graphical nature of all the LFCFs are displayed in 

Figures 3.1-3.3. 

Though it is necessary to examine the stability of 

various LFCFs against the model pseudopotential before 

its applications for the comprehensive study of metallic 

properties. 

The long wavelength limit (i.e. 𝑞 → 0) and short 

wavelength limit (i.e. 𝑞 → ∞) are tabulated in Table 1 for 

further comparison.  

It is seen that the LFCFs due to KS, KM, KL, MD, T, 

FHERR and KC give the infinite values at shorter 

wavelength limit. 

While, the SSTL, VS, JJ, IU, NG, SSHR, OB, MCS, 

BB, HGI and SHRS functions give the constant value 

depends on 𝑟𝑆 at 𝑞 → ∞ while TW, OV, SR, AF, KR and 

TM give 0.762, 0.898, 0.316, 13/30, 0.3333 and 0.33365, 

respectively. 

The remaining LFCFs are having value of 0.5 at 𝑞 →
∞ limit. 

It is also observed from the Figures 1-3 that, the 

LFCFs due to TW, IU and FR gives a peak below 𝑞 < 2𝑘𝐹 

which is a notable form in construct with the other 

functions. 

 

Finally, we conclude from the present article that, it 

represents a unique documentary data of the LFCFs, 

which are reported in chronological order. Such type of 

written information is not available in the literature so far. 

Hence, the present paper will attend a proper data set on 

LFCFs for scientific community. Also, the role of LFCF in 

the condensed matter physics are studied from the present 

article. 

 

 

Aditya M. Vora – Professor of Physics. 

 

 

[1] L. V. Tarasov, Basic Concepts of Quantum Mechanics (Mir Publications, Moscow, 1983). 

[2] W. A. Harrison, Elementary Electronic Structure (World Scientific, Singapore, 1999).  

[3] W. A. Harrison, Pseudopotentials in the Theory of Metals (W. A. Benjamin, Inc., New York, 1966).  

[4] V. Heine and D. Weaire, in Solid State Physics, Vol. 24, Eds. H. Ehrenreich, F. Seitz and D. Turnbull (Academic 

Press, New York, 1970), p. 249.  

[5] L. I. Yastrebov and A. K. Katsnelson, Foundations of One-Electron Theory of Solids (Mir Publications, Moscow, 

1987). 

[6] D. J. Singh and L. Nordström, Planewaves, Pseudopotentials and the LAPW Method (Springer, USA, 2006). 

[7] S. K. Srivastava, Pseudopotential in Physics and Chemistry of Solids (TPI Printers, Allahabad, 1977). 

[8] M. Meyer and V. Pontikis, Computer Simulation in Materials Science-Interatomic Potentials, Simulation 

Techniques and Applications, Eds. (Springer Science+Business Media, B.V., Dordrecht, 1991).  

[9] T. E. Faber, Theory of Liquid Metals (Cambridge Univ. Press, Cambridge, 1972). 

[10] M. Shimoji, Liquid Metals (Academic Press, London, 1977).  

[11] J. Hafner, From Hamiltonians to Phase Diagrams (Springer-Verlag Berlin Heidelberg New York, 1987). 

[12] G. Mahan, Many-Particle Physics, 2nd Ed. (Plenum, New York, 1990).  

[13] D. Pines and P. Nozières, The Theory of Quantum Liquids, Vol. I (Benjamin, New York, 1966). 

[14] L. V. Keldysh, D. A. Kirzhnitz and A. A. Maradudin, The Dielectric Function of Condensed Systems (Elsevier 

Science Publishers B.V., North-Holland, 1989). 

[15] F. J. Rogers and H. E. Dewitt, Strongly Coupled Plasma Physics, NATO ASI Series (Plenum Press, New York 

and London, 1986). 

[16] S. Lundqvist and N. H. March, Theory of the Inhomogeneous Electron Gas (Springer Science+Business Media, 

LLC, New York, 1983). 



A Brief Review and Role of Local Field Correction Functions in Condensed Matter Physics 

 517 

[17] H. Smith, The Lindhard Function and the Teaching of Solid State Physics, Phys. Scr., 28(3), 287 (1983); 

https://doi.org/10.1088/0031-8949/28/3/005. 

[18] D. Davis, Thomas-Fermi Screening in One Dimension, Phys. Rev. B, 7(1), 129 (1973); 

https://doi.org/10.1103/PhysRevB.7.129.  

[19] H. Haug and S. W. Koch, Quantum theory of the optical and electronic properties of semiconductors (World 

Scientific, Singapore, 2004). 

[20] J. Lindhard, Kogl. Dan. On The Properties of a Gas of Charged Particles, Mat. Fys. Medd.  28 (8), 1 (1954); 

https://gymarkiv.sdu.dk/MFM/kdvs/mfm%2020-29/mfm-28-8.pdf.   

[21] S. H. Vosko and L. Wilk, A Comparison of Self-Interaction-Corrected Local Correlation Energy Functionals, 

J. Phys. B: Atom. Mol. Phys., 16 (20), 3687 (1983); https://doi.org/10.1088/0022-3700/16/20/006.  

[22] J. Bardeen, Conductivity of Monovalent Metal, Phys. Rev., 52(7), 688 (1937); 

https://doi.org/10.1103/PhysRev.52.688.  

[23] H. Ehrenreich, M. H. Cohen, Self-Consistent Field Approach to the Many-Electron Problem, Phys. Rev. 115, 

786 (1959); https://doi.org/10.1098/rspa.1957.0106. 

[24] H. Hubbard, The description of collective motions in terms of many-body perturbation theory, Proc. Roy. Soc. 

A240, 539 (1957); https://doi.org/10.1098/rspa.1957.0106.  

[25] J. Hubbard, The description of collective motions in terms of many-body perturbation theory. II. The correlation 

energy of a free-electron gas, Proc. R. Soc. (London) A243, 336 (1958); https://doi.org/10.1098/rspa.1958.0003.  

[26] L. J. Sham, A calculation of the phonon frequencies in sodium, Proc. R. Soc. (London) A283, 33 (1965); 

https://doi.org/10.1098/rspa.1965.0005.  

[27] D. J. Geldert, S. H. Vosko, The screening function of an interacting electron gas, Can. J. Phys. 44, 2137 (1966); 

https://doi.org/10.1139/p66-174.  

[28] W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, 

A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133.  

[29] L. Kleinman, New Approximation for Screened Exchange and the Dielectric Constant of Metals, Phys. Rev. 

160, 585 (1967); https://doi.org/10.1103/PhysRev.160.585.  

[30] L. Kleinman, Exchange and the Dielectric Screening Function, Phys. Rev. 172, 383 (1968); 

https://doi.org/10.1103/PhysRev.172.383.  

[31] N. W. Ashcroft, Electron-ion pseudopotentials in the alkali metals, J. Phys. C: Solid State Phys. 1, 232 (1968); 

https://doi.org/10.1088/0022-3719/1/1/326.  

[32] K.S. Singwi, M. P. Tosi, A. Sjölander, R. H. Land, Electron Correlations at Metallic Densities, Phys. Rev. 176, 

589 (1968); https://doi.org/10.1103/PhysRev.176.589.  

[33] D. C. Langreth, Approximate Screening Functions in Metals, Phys. Rev. 181, 753 (1969); 

https://doi.org/10.1103/PhysRev.181.753.  

[34] R. W. Shaw, R. Pynn, Optimized model potential: exchange and correlation corrections and calculation of 

magnesium phonon spectrum, J. Phys. C: Solid State Phys. 2, 2071 (1969); https://doi.org/10.1088/0022-

3719/2/11/321.  

[35] K.S. Singwi, A. Sjölander, M.P. Tosi, R.H. Land,  Electron Correlations at Metallic Densities. IV, Phys. Rev. 

B1, 1044 (1970); https://doi.org/10.1103/PhysRevB.1.1044.  

[36] R. W. Shaw, Exchange and correlation in the theory of simple metals, J. Phys. C: Solid State Phys. 3, 1140 

(1970); https://doi.org/10.1088/0022-3719/3/5/027.  

[37] R. W. Shaw, in Solid State Physics: Advances in Research and Application, Eds. H. Ehrenreich, F. Seitz, D. 

Turnbull, Vol. 24, Academic Press, New York (1970). 

[38] F. Toigo, T. O. Woodruff, Calculation of the Dielectric Function for a Degenerate Electron Gas with 

Interactions. I. Static Limit, Phys. Rev. B2, 3958 (1970); https://doi.org/10.1103/PhysRevB.2.3958.  

[39] W. F. King, P. H. Cutter, A first principle pseudopotential calculation of the elastic shear constants of 

magnesium, J. Phys. Chem. Sol. 32, 761 (1971); https://doi.org/10.1016/0022-3697(71)90038-2.  

[40] W. F. King, P. H. Cutter, Lattice Dynamics of Beryllium from a First-Principles Nonlocal Pseudopotential 

Approach, Phys. Rev. B2, 1733 (1970); https://doi.org/10.1103/PhysRevB.2.1733.  

[41] W. F. King, P. H. Cutter, Lattice Dynamics of Magnesium from a First-Principles Nonlocal Pseudopotential 

Approach, Phys. Rev. B3, 2485 (1971); https://doi.org/10.1103/PhysRevB.3.2485.  

[42] A. W. Overhouser, Simplified Theory of Electron Correlations in Metals, Phys. Rev. B3, 1888 (1971); 

https://doi.org/10.1103/PhysRevB.3.1888.  

[43] S. D. Mahanti, T. P. Das, Theory of Knight Shifts and Relaxation Times in Alkali Metals-Role of Exchange Core 

Polarization and Exchange-Enhancement Effects, Phys. Rev. B3, 1599 (1971); 

https://doi.org/10.1103/PhysRevB.3.1599.  

[44] P. Vashishta, K. S. Singwi, Electron Correlations at Metallic Densities. V, Phys. Rev. B6, 875 (1972); 

https://doi.org/10.1103/PhysRevB.6.875.  

[45] S. C. Jain, M. Jain, On the calculation of the dielectric function of an interacting electron gas, Phys. Lett. A44, 

49 (1973); https://doi.org/10.1016/0375-9601(73)90955-9.  

[46] K. N. Pathak and P. Vashishta, Electron Correlations and Moment Sum Rules, Phys. Rev. B7, 3649 (1973); 

https://doi.org/10.1103/PhysRevB.7.3649.  

https://doi.org/10.1103/PhysRevB.7.129
https://doi.org/10.1088/0022-3700/16/20/006
https://doi.org/10.1103/PhysRev.52.688
https://doi.org/10.1098/rspa.1957.0106
https://doi.org/10.1098/rspa.1957.0106
https://doi.org/10.1098/rspa.1958.0003
https://doi.org/10.1098/rspa.1965.0005
https://doi.org/10.1139/p66-174
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.160.585
https://doi.org/10.1103/PhysRev.172.383
https://doi.org/10.1088/0022-3719/1/1/326
https://doi.org/10.1103/PhysRev.176.589
https://doi.org/10.1103/PhysRev.181.753
https://doi.org/10.1088/0022-3719/2/11/321
https://doi.org/10.1088/0022-3719/2/11/321
https://doi.org/10.1103/PhysRevB.1.1044
https://doi.org/10.1088/0022-3719/3/5/027
https://doi.org/10.1103/PhysRevB.2.3958
https://doi.org/10.1016/0022-3697(71)90038-2
https://doi.org/10.1103/PhysRevB.2.1733
https://doi.org/10.1103/PhysRevB.3.2485
https://doi.org/10.1103/PhysRevB.3.1888
https://doi.org/10.1103/PhysRevB.3.1599
https://doi.org/10.1103/PhysRevB.6.875
https://doi.org/10.1016/0375-9601(73)90955-9
https://doi.org/10.1103/PhysRevB.7.3649


Aditya M. Vora 

 518 

[47] A. A. Kugler, Theory of the local field correction in an electron gas, J. Stat. Phys. 12, 35 (1975); 

https://doi.org/10.1007/BF01024183.    

[48] S. K. Srivastava, Pseudopotential in metals and alloys, J. Phys. Chem. Sol. 38, 451 (1977); 

https://doi.org/10.1016/0022-3697(77)90177-9.  

[49] D. N. Tripathy and S. S. Mandal, Calculation of the dielectric function for an electron liquid, Phys. Rev. B16, 

231 (1977); https://doi.org/10.1103/PhysRevB.16.231.  

[50] R. Taylor, A simple, useful analytical form of the static electron gas dielectric function, J. Phys. F: Metal Phys. 

8, 1699 (1978); https://doi.org/10.1088/0305-4608/8/8/011.  

[51] K. Utsumi, S. Ichimaru, Dielectric formulation of strongly coupled electron liquids at metallic densities. IV. 

Static properties in the low-density domain and the Wigner crystallization, Phys. Rev. B24, 3220 (1981); 

https://doi.org/10.1103/PhysRevB.24.3220.  

[52] J. E. Alvarellos, F. Flores, Local field corrections for the dielectric function of an electron liquid, J. Phys. F: 

Met. Phys. 14, 1673 (1984); https://doi.org/10.1088/0305-4608/14/7/015.  

[53] A. B. Bhatia, R. N. Singh, Phonon dispersion in metallic glasses: A simple model,  Phys. Rev. B31, 4751 (1985); 

https://doi.org/10.1103/PhysRevB.31.4751.  

[54] I. Nagy, Analytic expression for the static local field correlation function, J. Phys. C: Solid State Phys. 19, L481 

(1986); https://doi.org/10.1088/0022-3719/19/22/002.  

[55] B. Farid, V. Heine, G. E. Engel, I. S. Robertson, Phys. Rev. B48, 11602 (1993); 

https://doi.org/10.1103/PhysRevB.48.11602.  

[56] A. Gold and L. Calmels, Correlation in Fermi liquids: Analytical results for the local-field correction in two 

and three dimensions, Phys. Rev. B48, 11622 (1993); https://doi.org/10.1103/PhysRevB.48.11622.  

[57] A. Gold, Local-field correction for the electron gas: Effects of the valley degeneracy, Phys. Rev. B50, 4297 

(1994); https://doi.org/10.1103/PhysRevB.50.4297.  

[58] A. Gold, The local-field correction for the interacting electron gas: many-body effects for unpolarized and 

polarized electrons, Z. Phys. B 103, 491 (1997); https://doi.org/10.1007/s002570050404.  

[59] G. Ortiz, P. Ballone, Correlation energy, structure factor, radial distribution function, and momentum 

distribution of the spin-polarized uniform electron gas, Phys. Rev. B50, 1391 (1994); 

https://doi.org/10.1103/PhysRevB.50.1391.  

[60] S. Moroni, D. M. Ceperley, G. Senatore, Static Response and Local Field Factor of the Electron Gas Phys. Rev. 

Lett. 75, 689 (1995); https://doi.org/10.1103/PhysRevLett.75.689.  

[61] J. L. Bretonnet and M. Boulahbak, Semianalytical form for the local-field correction, Phys. Rev. B53, 6859 

(1996); https://doi.org/10.1103/PhysRevB.53.6859.  

[62] A. Sarkar, D.S. Sen, S. Haldar, D. Roy, Static Local Field Factor for Dielectric Screening Function of Electron 

Gas at Metallic and Lower Densities, Mod. Phys. Lett. B12, 639 (1998); 

https://doi.org/10.1142/S0217984998000755.  

[63] S. Hellal, J. G. Gasser, A. Issolah, Phys. Rev. B68, 094204 (2003); 

https://doi.org/10.1103/PhysRevB.68.094204.   

[64] A. Sarkar, S. Haldar, D. Roy, D. Sen, Static Local Field Factor and Ground State Properties of Interacting 

Electron Gas, Acta Phys. Pol. A106, 497 (2004). 

[65] T. Dornheim, J. Vorberger, S. Groth, N. Hoffmann, Zh. A. Moldabekov and  M. Bonitz, The static local field 

correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning 

representation, J. Chem. Phys. 151, 194104 (2019); https://doi.org/10.1063/1.5123013.  

[66] T. Dornheim, M. Böhme, B. Militzer and J. Vorberger, Ab initio path integral Monte Carlo approach to the 

momentum distribution of the uniform electron gas at finite temperature without fixed nodes, arXiv:2103.08206 

(2021). 

[67] T. Dornheim, A. Cangi, K. Ramakrishna and M. Böhme, Effective Static Approximation: A Fast and Reliable 

Tool for Warm-Dense Matter Theory, Phys. Rev. Lett. 125, 235001 (2020); 

https://doi.org/10.1103/PhysRevLett.125.235001.  

[68] C. A. Kukkonen and K. Chen, Insights into the Electron-Electron Interaction from Quantum Monte Carlo 

Calculations,  arXiv:2101.10508v1 (2021); https://doi.org/10.48550/arXiv.2101.10508 

[69] C.R. Leavens, A.H. MacDonald, R. Taylor, A. Ferraz and N. H. March, Finite Mean-Free-Paths and the 

Electrical Resistivity of Liquid Simple Metals, Phys. Chem. Liq. 11, 115 (1981); 

https://doi.org/10.1080/00319108108079103.   

[70] Z. H. Levine and S. G. Louie, New model dielectric function and exchange-correlation potential for 

semiconductors and insulators, Phys. Rev. B25, 6310 (1982); https://doi.org/10.1103/PhysRevB.25.6310. 

[71] N. Singh and S. Prakash, Phonon Frequencies and Cohesive Energies of Copper, Silver, and Gold, Phys. Rev. 

B8, 5532 (1973); https://doi.org/10.1103/PhysRevB.8.5532.  

[72] K. S. Singwi, K. Skold and M. P. Tosi, Collective Motions in Classical Liquids, Phys. Rev. A1, 454 (1970); 

https://doi.org/10.1103/PhysRevA.1.454.  

[73] L. Hedin, B. I. Lundquist and S. Lundquist, Beyond the One-Electron Approximation: Density of States for 

Interacting Electrons, Nat. Bur. Stand. (US) Spec. Publ. 323, 246 (1971); https://doi.org/10.6028/jres.074A.032.   

https://doi.org/10.1007/BF01024183
https://doi.org/10.1016/0022-3697(77)90177-9
https://doi.org/10.1103/PhysRevB.16.231
https://doi.org/10.1088/0305-4608/8/8/011
https://doi.org/10.1103/PhysRevB.24.3220
https://doi.org/10.1088/0305-4608/14/7/015
https://doi.org/10.1103/PhysRevB.31.4751
https://doi.org/10.1088/0022-3719/19/22/002
https://doi.org/10.1103/PhysRevB.48.11602
https://doi.org/10.1103/PhysRevB.48.11622
https://doi.org/10.1103/PhysRevB.50.4297
https://doi.org/10.1007/s002570050404
https://doi.org/10.1103/PhysRevB.50.1391
https://doi.org/10.1103/PhysRevLett.75.689
https://doi.org/10.1103/PhysRevB.53.6859
https://doi.org/10.1142/S0217984998000755
https://doi.org/10.1063/1.5123013
https://doi.org/10.1103/PhysRevLett.125.235001
https://doi.org/10.48550/arXiv.2101.10508
https://doi.org/10.1080/00319108108079103
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1103/PhysRevB.8.5532
https://doi.org/10.1103/PhysRevA.1.454
https://doi.org/10.6028/jres.074A.032


A Brief Review and Role of Local Field Correction Functions in Condensed Matter Physics 

 519 

[74] D. J. W. Geldart and R. Taylor, Wave-number dependence of the static screening function of an interacting 

electron gas. II. Higher-order exchange and correlation effects, Can. J. Phys. 48, 167 (1970); 

https://doi.org/10.1139/p70-023.  

[75] D. Ceperley and B. J. Alder, The low density phases of the electron gas, J. de Physique C7, 295 (1980); 

http://dx.doi.org/10.1051/jphyscol:1980744. 

[76] D. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45, 566 

(1980); https://doi.org/10.1103/PhysRevLett.45.566.  

[77] G.G. Spink, R.J. Needs and N.D. Drummond, Quantum Monte Carlo study of the three-dimensional spin-

polarized homogeneous electron gas, Phys. Rev. B88, 085121 (2013); 

https://doi.org/10.1103/PhysRevB.88.085121.  

[78] G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa and A. Fazzio, From DFT to machine learning: recent 

approaches to materials science–a review, NPJ Comp. Mater. 5, 1 (2019); https://doi.org/10.1088/2515-

7639/ab084b.  

[79] G. Onida, L. Reining, and A. Rubio, Electronic excitations: density-functional versus many-body Green’s-

function approaches, Rev. Mod. Phys. 74, 601 (2002); https://doi.org/10.1103/RevModPhys.74.601.  

[80] Z. Qian and G. Vignale, Lifetime of a quasiparticle in an electron liquid, Phys. Rev. B71, 075112 (2005); 

https://doi.org/10.1103/PhysRevB.71.075112.  

[81] C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, Oxford University 

Press, UK (2012); https://doi.org/10.1093/acprof:oso/9780199563029.001.0001.  

[82] A. Jain, S. Ping Ong,, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. 

Ceder and  K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating 

materials innovation, APL Mater. 1, 011002 (2013); https://doi.org/10.1063/1.4812323.  

[83] M. Shishkin and G. Kresse, Implementation and performance of the frequency-dependent GW method within 

the PAW framework, Phys. Rev. B74, 035101 (2006); https://doi.org/10.1103/PhysRevB.74.035101.  

[84] M. Ceriotti, C. Clementi and O. A. von Lilienfeld, Machine learning meets chemical physics, J. Chem. Phys. 

154, 160401 (2021); https://doi.org/10.1063/5.0051418. 

[85] I. Timrov, N. Marzari and M. Cococcioni, Self-consistent Hubbard parameters from density-functional 

perturbation theory in the ultrasoft and projector-augmented wave formulations, Phys. Rev. B100, 045141 (2021); 

https://doi.org/10.1103/PhysRevB.103.045141.  

[86] A. Marini, C. Hogan, M. Grüning and D. Varsano, yambo: An ab initio tool for excited state calculations, Comp. 

Phys. Commun. 180, 1392 (2009); https://doi.org/10.1016/j.cpc.2009.02.003.  

[87] C. A. Draxl and J. O. Sofo, Linear optical properties of solids within the full-potential linearized augmented 

planewave method, Comp. Phys. Commun. 175, 1 (2006); https://doi.org/10.1016/j.cpc.2006.03.005.  

[88] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, First principles 

methods using CASTEP, Zeitschrift für Kristallographie 220, 567 (2005); 

https://10.1524_zkri.220.5.567.65075.pdf, https://doi.org/10.1524/zkri.220.5.567.65075. 

 

 

А.М. Вора 

Короткий огляд та роль корекцій функцій локального поля у фізиці 

конденсованих систем 

Кафедра фізики, Університетська школа наук, Гуджаратський університет, Ахмедабад, Гуджарат, Індія, 

voraam@gmail.com  

У огляді висвітлюється важливість спектру коригувальних функцій локального поля (LFCFs) у фізиці 

конденсованих станів, які зустрічаються у різних літературних оглядах. Загалом, у літературі виявлено 40 

різних форм LFCFs. Наведено основні параметри кожної функції LFCFs разом із коротким описом. Головна 
мета – виділити різні корекції локального поля, опубліковані в літературі починаючи з 1957 року та надати 

науковій спільноті повну довідкову інформацію.   

Ключові слова: однорідний електронний газ; корекції функції локального поля (LFCFs); дифузійний 

метод Монте-Карло (DMC); теорія діелектричного екранування.  
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